Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
61 result(s) for "Enyong, Peter"
Sort by:
The geographic distribution of onchocerciasis in the 20 participating countries of the African Programme for Onchocerciasis Control: (1) priority areas for ivermectin treatment
Background The African Programme for Onchocerciasis Control (APOC) was created to control onchocerciasis as a public health problem in 20 African countries. Its main strategy is community directed treatment with ivermectin. In order to identify all high risk areas where ivermectin treatment was needed, APOC used Rapid Epidemiological Mapping of Onchocerciasis (REMO). REMO has now been virtually completed and we report the results in two articles. The present article reports the mapping of high risk areas where onchocerciasis was a public health problem. The companion article reports the results of a geostatistical analysis of the REMO data to map endemicity levels and estimate the number infected. Methods REMO consists of three stages: exclusion of areas that are unsuitable for the vector, selection of sample villages to be surveyed in each river basin, and examination of 30 to 50 adults for the presence of palpable onchocercal nodules in each selected village. The survey results and other relevant information were processed in a geographical information system. A panel of experts interpreted the data taking the river-based sampling into account and delineated high risk areas where the prevalence of nodules is greater than 20%. Results Unsuitable areas were identified in eight countries. In the remaining areas surveys were done in a total of 14,473 sample villages in which more than half a million people were examined. High-risk areas were identified in 18 APOC countries, ranging from small isolated foci to a vast contiguous endemic area of 2 million km 2 running across seven countries. In five countries the high risk area covered more than 48% of the total surface area, and 31% to 48% of the population. It is estimated that 86 million people live in high risk areas in the APOC countries. Conclusions The REMO maps have played a significant role in onchocerciasis control in the 20 APOC countries. All high-risk areas where onchocerciasis used to be a serious public health problem have been clearly delineated. This led to the creation of community-directed treatment projects that by 2012 were providing annual ivermectin treatment to over 80 million people.
Impact of repeated annual community directed treatment with ivermectin on loiasis parasitological indicators in Cameroon: Implications for onchocerciasis and lymphatic filariasis elimination in areas co-endemic with Loa loa in Africa
Loiasis is a filarial infection endemic in the rainforest zone of west and central Africa particularly in Cameroon, Gabon, Republic of Congo, and Democratic Republic of the Congo. Repeated treatments with ivermectin have been delivered using the annual community directed treatment with ivermectin (CDTI) approach for several years to control onchocerciasis in some Loa loa-Onchocerca volvulus co-endemic areas. The impact of CDTI on loiasis parasitological indicators is not known. We, therefore, designed this cross sectional study to explore the effects of several rounds of CDTI on parasitological indicators of loiasis. The study was conducted in the East, Northwest and Southwest 2 CDTI projects of Cameroon. Individuals who consented to participate were interviewed for ivermectin treatment history and enrolled for parasitological screening using thick smears. Ivermectin treatment history was correlated with loiasis prevalence/intensity. A total of 3,684 individuals were recruited from 36 communities of the 3 CDTI projects and 900 individuals from 9 villages in a non-CDTI district. In the East, loiasis prevalence was 29.3% (range = 24.2%-34.6%) in the non-CDTI district but 16.0% (3.3%-26.6%) in the CDTI district with 10 ivermectin rounds (there were no baseline data for the latter). In the Northwest and Southwest 2 districts, reductions from 30.5% to 17.9% (after 9 ivermectin rounds) but from 8.1% to 7.8% (not significantly different after 14 rounds) were registered post CDTI, respectively. Similar trends in infection intensity were observed in all sites. There was a negative relationship between adherence to ivermectin treatment and prevalence/intensity of infection in all sites. None of the children (aged 10-14 years) examined in the East CDTI project harboured high (8,000-30,000 mf/ml) or very high (>30,000 mf/ml) microfilarial loads. Individuals who had taken >5 ivermectin treatments were 2.1 times more likely to present with no microfilaraemia than those with less treatments. In areas where onchocerciasis and loiasis are co-endemic, CDTI reduces the number of, and microfilaraemia in L. loa-infected individuals, and this, in turn, will help to prevent non-neurological and neurological complications post-ivermectin treatment among CDTI adherents.
Cross-Reactivity of Filariais ICT Cards in Areas of Contrasting Endemicity of Loa loa and Mansonella perstans in Cameroon: Implications for Shrinking of the Lymphatic Filariasis Map in the Central African Region
Immunochromatographic card test (ICT) is a tool to map the distribution of Wuchereria bancrofti. In areas highly endemic for loaisis in DRC and Cameroon, a relationship has been envisaged between high L. loa microfilaria (Mf) loads and ICT positivity. However, similar associations have not been demonstrated from other areas with contrasting levels of L. loa endemicity. This study investigated the cross-reactivity of ICT when mapping lymphatic filariasis (LF) in areas with contrasting endemicity levels of loiasis and mansonellosis in Cameroon. A cross-sectional study to assess the prevalence and intensity of W. bancrofti, L. loa and M. perstans was carried out in 42 villages across three regions (East, North-west and South-west) of the Cameroon rainforest domain. Diurnal blood was collected from participants for the detection of circulating filarial antigen (CFA) by ICT and assessment of Mf using a thick blood smear. Clinical manifestations of LF were also assessed. ICT positives and patients clinically diagnosed with lymphoedema were further subjected to night blood collection for the detection of W. bancrofti Mf. Overall, 2190 individuals took part in the study. Overall, 24 individuals residing in 14 communities were tested positive by ICT, with prevalence rates ranging from 0% in the South-west to 2.1% in the North-west. Lymphoedema were diagnosed in 20 individuals with the majority of cases found in the North-west (11/20), and none of them were tested positive by ICT. No Mf of W. bancrofti were found in the night blood of any individual with a positive ICT result or clinical lymphoedema. Positive ICT results were strongly associated with high L. loa Mf intensity with 21 subjects having more than 8,000 L. loa Mf ml/blood (Odds ratio = 15.4; 95%CI: 6.1-39.0; p < 0.001). Similarly, a strong positive association (Spearman's rho = 0.900; p = 0.037) was observed between the prevalence of L. loa and ICT positivity by area: a rate of 1% or more of positive ICT results was found only in areas with an L. loa Mf prevalence above 15%. In contrast, there was no association between ICT positivity and M. perstans prevalence (Spearman's rho = - 0.200; p = 0.747) and Mf density (Odds ratio = 1.8; 95%CI: 0.8-4.2; p = 0.192). This study has confirmed the strong association between the ICT positivity and L. loa intensity (Mf/ml of blood) at the individual level. Furthermore, the study has demonstrated that ICT positivity is strongly associated with high L. loa prevalence. These results suggest that the main confounding factor for positive ICT test card results are high levels of L. loa. The findings may indicate that W. bancrofti is much less prevalent in the Central African region where L. loa is highly endemic than previously assumed and accurate re-mapping of the region would be very useful for shrinking of the map of LF distribution.
Programmatic factors associated with the limited impact of Community-Directed Treatment with Ivermectin to control Onchocerciasis in three drainage basins of South West Cameroon
The CDTI model is known to have enhanced community participation in planning and resource mobilization toward the control of onchocerciasis. These effects were expected to translate into better individual acceptance of the intervention and hence high Treatment Coverage, leading to a sustainable community-led strategy and reduction in the disease burden. A survey revealed that after 10-12 rounds of treatment, prevalence of onchocerciasis was still high in three drainage basins of South West Cameroon and transmission was going on. We designed a three (3)-year retrospective (2012, 2013 and 2014), descriptive cross-sectional study to explore the roles of operational challenges in the failure of CDTI to control the disease as expected. We administered 83 semi-structured questionnaires and conducted 12 in-depth interviews with Chiefs of Bureau Health, Chiefs of Centers, CDDs and Community Heads. Descriptive statistics was used to explore indicators of performance which were supported with views from in-depth interviews. We found that community participation was weak; communities were not deciding time and mode of distributions. Only 6 (15.0%) of 40 Community Drug Distributors reported they were selected at general community meetings as required. The health service was not able to meet and discuss Community-Directed Treatment with Ivermectin activities with individual communities partly due to transportation challenges; this was mostly done through letters. Funding was reported to be inadequate and not timely. Funds were not available to conduct Community-Self Monitoring after the 2014 Mass Drug Administration. There was inadequate health staff at the frontline health facility levels, and some Chiefs of Center reported that Community-Directed Treatment with Ivermectin work was too much for them. The mean operational Community Drug Distributor-population ratio was 1 Community Drug Distributor per 317 populations (range: 194-464, expected is 1:250). Community Drug Distributor attrition rate was 14% (2012), 11% (2013) and 12% (2014) of total Community Drug Distributors trained in the region. Lack of incentive for Community Drug Distributor was primary reason for Community Drug Distributor attrition. Number of Community Drug Distributors trained together by health area ranged from 14 to 127 (mean ± SD = 51 ±32) with duration of training ranging from 4-7 hours (mean ± SD = 5.05 ± 1.09). The trainings were conducted at the health centers. Community Drug Distributors always conducted census during the past three distributions (Mean ± SD = 2.85 ± 0.58). Community-Self Monitoring was facing challenge. Several of the community heads, Chiefs of Bureau Health and Chiefs of Center agreed that Community-Self Monitoring was not being carried out effectively due to lack of incentives for monitors in the communities. Inadequate human resource, funding issues and transportation challenges during distribution periods reduced the ability of the health service to thoroughly sensitize communities and supervise CDTI activities. This resulted in weak community understanding, acceptance and participation in the process. CDTI in our study area did not achieve sustainable community-led campaign and this may have led to the reduced impact on Onchocerciasis.
Mapping lymphatic filariasis in Loa loa endemic health districts naïve for ivermectin mass administration and situated in the forested zone of Cameroon
Background The control of lymphatic filariasis (LF) caused by Wuchereria bancrofti in the Central African Region has been hampered by the presence of Loa loa due to severe adverse events that arise in the treatment with ivermectin. The immunochromatographic test (ICT) cards used for mapping LF demonstrated cross-reactivity with L. loa and posed the problem of delineating the LF map. To verify LF endemicity in forest areas of Cameroon where mass drug administration (MDA) has not been ongoing, we used the recently developed strategy that combined serology, microscopy and molecular techniques. Methods This study was carried out in 124 communities in 31 health districts (HDs) where L. loa is present. At least 125 persons per site were screened. Diurnal blood samples were investigated for circulating filarial antigen (CFA) by FTS and for L. loa microfilariae (mf) using TBF. FTS positive individuals were further subjected to night blood collection for detecting W. bancrofti . qPCR was used to detect DNA of the parasites. Results Overall, 14,446 individuals took part in this study, 233 participants tested positive with FTS in 29 HDs, with positivity rates ranging from 0.0 to 8.2%. No W. bancrofti mf was found in the night blood of any individuals but L. loa mf were found in both day and night blood of participants who were FTS positive. Also, qPCR revealed that no W. bancrofti but L.loa DNA was found with dry bloodspot. Positive FTS results were strongly associated with high L. loa mf load. Similarly, a strong positive association was observed between FTS positivity and L loa prevalence. Conclusions Using a combination of parasitological and molecular tools, we were unable to find evidence of W. bancrofti presence in the 31 HDs, but L. loa instead. Therefore, LF is not endemic and LF MDA is not required in these districts.
Mapping of lymphatic filariasis in loiasis areas: A new strategy shows no evidence for Wuchereria bancrofti endemicity in Cameroon
Mapping of lymphatic filariasis (LF) caused by Wuchereria bancrofti largely relies on the detection of circulating antigen using ICT cards. Several studies have recently shown that this test can be cross-reactive with sera of subjects heavily infected with Loa loa and thus mapping results in loiasis endemic areas may be inaccurate. In order to develop an LF mapping strategy for areas with high loiasis prevalence, we collected day blood samples from 5,001 subjects residing in 50 villages that make up 6 health districts throughout Cameroon. Antigen testing using Filarial Test Strip (FTS, a novel platform that uses the same reagents as ICT) revealed an overall positivity rate of 1.1% and L. loa microfilaria (Mf) rates of up to 46%. Among the subjects with 0 to 8,000 Mf/ml in day blood, only 0.4% were FTS positive, while 29% of subjects with >8,000 Mf/ml were FTS positive. A Mf density of >8,200 Mf/ml was determined as the cut point at which positive FTS results should be excluded from the analysis. No FTS positive samples were also positive for W. bancrofti antibodies as measured by two different point of care tests that use the Wb123 antigen not found in L. loa. Night blood examination of the FTS positive subjects showed a high prevalence of L. loa Mf with densities up to 12,710 Mf/ml. No W. bancrofti Mf were identified, as confirmed by qPCR. Our results show that high loads of L. loa Mf in day blood are a reliable indicator of FTS positivity, and Wb123 rapid test proved to be relatively specific. Our study provides a simple day blood-based algorithm for LF mapping in loiasis areas. The results indicate that many districts that were formerly classified as endemic for LF in Cameroon are non-endemic and do not require mass drug administration for elimination of LF.
Update on the biology and ecology of Culicoides species in the South-West region of Cameroon with implications on the transmission of Mansonella perstans
Background Culicoides (Diptera; Ceratoponidae) are tiny, stout, blood-sucking flies with a near worldwide distribution. When present, they are often considered a biting nuisance but in addition, they are involved in the transmission of pathogens to humans, domestic and wild animals. Data on Culicoides species in the South-West region of Cameroon dates back to the 1950s. Over the decades, ecological transformation due to agriculture and deforestation may have affected the population dynamics of Culicoides and therefore our study provides an update of their bio-ecology in the region. Furthermore, the role of various Culicoides species in the transmission of parasitic filariae of the genus Mansonella remains inconclusive in this region. This study was designed to address these unknown issues and expand on current scientific knowledge. Results Eight species of Culicoides ( C. bedfordi , C. inornatipennis , C. fulvithorax , C. grahamii , C. imicola , C. milnei , C. neavei and C. kumbaensis ) were collected using light traps and human baits. Culicoides grahamii was the most abundant species, followed closely by C. milnei . Three species ( C. milnei , C. grahamii and C. inornatipennis ) were common in all observed larval development sites. Only four species ( C. inornatipennis , C. fulvithorax , C. grahamii and C. milnei ) were collected on humans. Anthropophilic species were more abundant ( P  < 0.001) in the evening (4–7 pm) when compared to the morning collections (6–9 am). After overnight fly collections using a drop trap with a human microfilaremic donor, C. milnei emerged as the potential host for transmitting Mansonella perstans . Substantial heterogeneity was observed between the trap visiting cycles of the various species ( P  < 0.001). The biting cycle of the main vector, C. milnei , showed two peaks (10–11 pm and 4–5 am), the highest being 10–11 pm. Conclusions The Culicoides fauna of the South-West region of Cameroon has not changed significantly since the 1950s. Culicoides milnei was demonstrated to be the major vector of M. perstans in this part of Cameroon. It is essentially a nocturnal species which peaks in abundance between 10 and 11 pm.
Establishment of an in vitro culture system to study the developmental biology of Onchocerca volvulus with implications for anti-Onchocerca drug discovery and screening
Infections with Onchocerca volvulus nematodes remain a threat in Sub-Saharan Africa after three decades of ivermectin mass drug administration. Despite this effort, there is still an urgent need for understanding the parasite biology especially the mating behaviour and nodule formation as well as the development of more potent drugs that can clear the developmental (L3, L4, L5) and adult stages of the parasite and inhibit parasite reproduction and behaviour. Prior to culture, freshly harvested O. volvulus L3 larvae from dissected Simulium damnosum flies were purified by centrifugation using a 30% Percoll solution to eliminate fly tissue debris and contaminants. Parasites were cultured in both cell-free and cell-based co-culture systems and monitored daily by microscopic visual inspection. Exhausted culture medium was replenished every 2-3 days. The cell-free culture system (DMEM supplemented with 10% NCS) supported the viability and motility of O. volvulus larvae for up to 84 days, while the co-culture system (DMEM supplemented with 10% FBS and seeded on LLC-MK2 feeder cells) extended worm survival for up to 315 days. Co-culture systems alone promoted two consecutive parasite moults (L3 to L4 and L4 to L5) with highest moulting rates (69.2±30%) observed in DMEM supplemented with 10% FBS and seeded on LLC-MK2 feeder cells, while no moult was observed in DMEM supplemented with 10% NCS and seeded on LEC feeder cells. In DMEM supplemented with 10% FBS and seeded on LLC-MK2 feeder cells, O. volvulus adult male worms attached to the vulva region of adult female worms and may have mated in vitro. Apparent early initiation of nodulogenesis was observed in both DMEM supplemented with 10% FBS and seeded on LLC-MK2 and DMEM supplemented with 10% NCS and seeded on LLC-MK2 systems. The present study describes an in vitro system in which O. volvulus L3 larvae can be maintained in culture leading to the development of adult stages. Thus, this in vitro system may provide a platform to investigate mating behaviour and early stage of nodulogenesis of O. volvulus adult worms that can be used as additional targets for macrofilaricidal drug screening.
‘Slash and clear’ vector control for onchocerciasis elimination and epilepsy prevention: a protocol of a cluster randomised trial in Cameroonian villages
IntroductionOnchocerciasis, caused by the filarial nematode Onchocerca volvulus, remains endemic in Cameroon despite decades of community-directed treatment with ivermectin (CDTI). CDTI is often hampered by coendemicity with loiasis (another filariasis caused by Loa loa) in some areas. Strong epidemiological evidence suggests that O. volvulus infection increases the risk for onchocerciasis-associated epilepsy (OAE) among Cameroonian children. This highlights the urgent need to strengthen onchocerciasis elimination programmes in mesoendemic/hyperendemic areas. Novel alternative strategies, such as the ‘slash and clear’ (S&C) vector control method, may be required to complement ongoing CDTI to accelerate elimination of transmission. The short-term impact of S&C on the biting rates of the blackfly vectors has been demonstrated in other settings. However, its long-term effectiveness and impact on parasitological and serological markers of onchocerciasis transmission as well as on OAE are still unknown.Methods and analysisWe aim to assess the effectiveness of annual S&C interventions combined with CDTI in reducing onchocerciasis transmission and epilepsy incidence. Eight onchocerciasis-endemic villages located <5 km from the Mbam or Sanaga rivers will be randomised to two arms: four villages will receive yearly CDTI only for two consecutive years (Arm 1), while the other four villages will receive CDTI plus annual S&C for 2 years (Arm 2). Study outcomes (blackfly biting rates, infectivity rates and seroprevalence of onchocerciasis antibodies (Ov16 antibodies) in children, prevalence of microfilaridermia and epilepsy incidence) will be monitored prospectively and compared across study arms. We expect that S&C will have an added benefit over CDTI alone.Ethics and disseminationThe protocol has received ethical approval from the institutional review board of the Cameroon Baptist Convention Health Board (reference number: IRB2021-03) and has been registered with the Pan African Clinical Trials Registry. Findings will be disseminated at national and international levels via meetings and peer-reviewed publications.Trial registration numberPACTR202101751275357.
Simulium larvae susceptibility to temephos and the effect of 10 weeks of treatment of the Mbende tributary in the Nkam-Wouri River drainage of Cameroon on larval density and adult fly biting rates
Background Despite over 18 years of annual ivermectin mass drug administration (MDA) in Cameroon’s Nkam-Wouri River drainage, onchocerciasis transmission persists. Several reasons, including multiple breeding sites and abundant vector populations, contribute to ongoing transmission. High vector abundance also causes a biting nuisance to local populations. The change in paradigm from onchocerciasis control to elimination may not be achieved if alternative control measures are not used. There is a need to complement ivermectin MDA with other strategies. This study tested the susceptibility of Simulium larvae to temephos insecticide and monitored the effect of 10 weeks of ground larviciding on the larval density and black fly population. Methods Simulium breeding sites along the course of three rivers within the Solle transmission zone in the Nkam-Wouri River drainage were identified. Seven temephos concentrations (0.001–0.1 mg/l) were tested on freshly collected Simulium larvae for susceptibility. Simulium biting rates were monitored using human landing catches before and during 10 weeks of ground larviciding. Fishing was used to assess the abundance and diversity of large aquatic fauna, while the presence and diversity of small invertebrate fauna were assessed during the collection of larvae, as they are usually found on the same substrates in the river. Ground larviciding was conducted using the spraying method at two dosing points. Results Six breeding sites were identified. Larval mortality decreased with temephos concentration, with 100% mortality observed at 0.1–0.025 mg/l. The non-target fauna included various fish species, crabs, crayfish, and small invertebrates. Ground larviciding cleared larvae from identified substrates and reduced adult fly biting rates by 82.8% (from 900 flies/man/day at the beginning to 180 flies/man/day at the end), a statistically significant decrease ( χ 2  = 1351.5, P  < 0.001). Conclusions Simulium larvae showed susceptibility to temephos. Clearance of larvae from traps and identified natural substrates, and a significant reduction in the Simulium biting rates were observed. Graphical Abstract