Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
5
result(s) for
"Episkopou, Hara"
Sort by:
Correction: Aberrant DNA Damage Response Pathways May Predict the Outcome of Platinum Chemotherapy in Ovarian Cancer
[This corrects the article DOI: 10.1371/journal.pone.0117654.].[This corrects the article DOI: 10.1371/journal.pone.0117654.].
Journal Article
An Autologous Human Adipose Stem Cell-Derived 3D Osteogenic Implant for Bone Grafting: From Development to First-in-Human Experience
by
Carrino, John A.
,
Dufrane, Denis
,
Gerich, Torsten
in
Adipose tissues
,
Animals
,
Biological activity
2025
Background: NVD003 is an autologous, adipose tissue-derived stem cell-based tissue-engineered bone graft substitute with pro-osteogenic, anti-resorptive, and pro-angiogenic properties. Here, we describe highlights from the NVD003 preclinical development program as well as early clinical experience. Methods: NVD003 is produced in a Good Manufacturing Practice-controlled process from adipose stem cells collected during a minimally invasive liposuction procedure. The final implant is a ready-to-use moldable putty with fixed mineral content and predefined physiologic ranges of osteogenic cells and bioactive growth factors. Preclinical pharmacology studies were conducted in nude rats using a paravertebral implantation model, and subsequently, in a femoral critical-sized bone defect (CSBD) model. In a first-in-human Phase 1b/2a study, NVD003 was used for fracture osteosynthesis with classical fixation material in nine adults with recalcitrant lower limb non-union. NVD003 was also used at the discretion of treating physicians in four pediatric patients surgically treated for congenital pseudarthrosis of the tibia (CPT) with the Masquelet technique. Efficacy was evaluated as clinical healing and in terms of bone formation, bone union, and bone remodeling on radiographs and computed tomography using the extended Lane and Sandhu Scale. Results: Preclinical studies indicated that NVD003 requires cellularity for its bioactivity and moreover facilitates bone union when used as a graft material in femoral CSBD. In the clinical study, nine adult participants were successfully grafted with NVD003 and completed study follow-up to 24 months, with extended safety follow-up to 5 years ongoing. No adverse events were considered related to NVD003. Maximal bone formation occurred between 3 and 12 months post-implantation; the mean time to clinical healing was 6 months and the mean time to radiological union was 17 months. Ultimately, 89% (8/9) of patients achieved bone union without refracture. All four pediatric patients with CPT also achieved lasting bone union following grafting with NVD003. No safety signals were observed over a mean follow-up of 62.1 months. Conclusions: NVD003 represents a safe, autologous bone graft substitute product without side effects of heterotopic ossification or bone resorption. NVD003 facilitated bone union in adult and pediatric patients even under severe pathophysiological conditions.
Journal Article
Aberrant DNA Damage Response Pathways May Predict the Outcome of Platinum Chemotherapy in Ovarian Cancer
by
Photiou, Stylianos
,
Episkopou, Hara
,
Kyrtopoulos, Soterios A.
in
Adult
,
Aged
,
Antineoplastic Agents - administration & dosage
2015
Ovarian carcinoma (OC) is the most lethal gynecological malignancy. Despite the advances in the treatment of OC with combinatorial regimens, including surgery and platinum-based chemotherapy, patients generally exhibit poor prognosis due to high chemotherapy resistance. Herein, we tested the hypothesis that DNA damage response (DDR) pathways are involved in resistance of OC patients to platinum chemotherapy. Selected DDR signals were evaluated in two human ovarian carcinoma cell lines, one sensitive (A2780) and one resistant (A2780/C30) to platinum treatment as well as in peripheral blood mononuclear cells (PBMCs) from OC patients, sensitive (n = 7) or resistant (n = 4) to subsequent chemotherapy. PBMCs from healthy volunteers (n = 9) were studied in parallel. DNA damage was evaluated by immunofluorescence γH2AX staining and comet assay. Higher levels of intrinsic DNA damage were found in A2780 than in A2780/C30 cells. Moreover, the intrinsic DNA damage levels were significantly higher in OC patients relative to healthy volunteers, as well as in platinum-sensitive patients relative to platinum-resistant ones (all P<0.05). Following carboplatin treatment, A2780 cells showed lower DNA repair efficiency than A2780/C30 cells. Also, following carboplatin treatment of PBMCs ex vivo, the DNA repair efficiency was significantly higher in healthy volunteers than in platinum-resistant patients and lowest in platinum-sensitive ones (t1/2 for loss of γH2AX foci: 2.7±0.5h, 8.8±1.9h and 15.4±3.2h, respectively; using comet assay, t1/2 of platinum-induced damage repair: 4.8±1.4h, 12.9±1.9h and 21.4±2.6h, respectively; all P<0.03). Additionally, the carboplatin-induced apoptosis rate was higher in A2780 than in A2780/C30 cells. In PBMCs, apoptosis rates were inversely correlated with DNA repair efficiencies of these cells, being significantly higher in platinum-sensitive than in platinum-resistant patients and lowest in healthy volunteers (all P<0.05). We conclude that perturbations of DNA repair pathways as measured in PBMCs from OC patients correlate with the drug sensitivity of these cells and reflect the individualized response to platinum-based chemotherapy.
Journal Article
Aberrant DNA Damage Response Pathways May Predict the Outcome of Platinum Chemotherapy in Ovarian Cancer: e0117654
2015
Ovarian carcinoma (OC) is the most lethal gynecological malignancy. Despite the advances in the treatment of OC with combinatorial regimens, including surgery and platinum-based chemotherapy, patients generally exhibit poor prognosis due to high chemotherapy resistance. Herein, we tested the hypothesis that DNA damage response (DDR) pathways are involved in resistance of OC patients to platinum chemotherapy. Selected DDR signals were evaluated in two human ovarian carcinoma cell lines, one sensitive (A2780) and one resistant (A2780/C30) to platinum treatment as well as in peripheral blood mononuclear cells (PBMCs) from OC patients, sensitive (n = 7) or resistant (n = 4) to subsequent chemotherapy. PBMCs from healthy volunteers (n = 9) were studied in parallel. DNA damage was evaluated by immunofluorescence gamma H2AX staining and comet assay. Higher levels of intrinsic DNA damage were found in A2780 than in A2780/C30 cells. Moreover, the intrinsic DNA damage levels were significantly higher in OC patients relative to healthy volunteers, as well as in platinum-sensitive patients relative to platinum-resistant ones (all P<0.05). Following carboplatin treatment, A2780 cells showed lower DNA repair efficiency than A2780/C30 cells. Also, following carboplatin treatment of PBMCs ex vivo, the DNA repair efficiency was significantly higher in healthy volunteers than in platinum-resistant patients and lowest in platinum-sensitive ones (t1/2 for loss of gamma H2AX foci: 2.7 plus or minus 0.5h, 8.8 plus or minus 1.9h and 15.4 plus or minus 3.2h, respectively; using comet assay, t1/2 of platinum-induced damage repair: 4.8 plus or minus 1.4h, 12.9 plus or minus 1.9h and 21.4 plus or minus 2.6h, respectively; all P<0.03). Additionally, the carboplatin-induced apoptosis rate was higher in A2780 than in A2780/C30 cells. In PBMCs, apoptosis rates were inversely correlated with DNA repair efficiencies of these cells, being significantly higher in platinum-sensitive than in platinum-resistant patients and lowest in healthy volunteers (all P<0.05). We conclude that perturbations of DNA repair pathways as measured in PBMCs from OC patients correlate with the drug sensitivity of these cells and reflect the individualized response to platinum-based chemotherapy.
Journal Article