Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
9 result(s) for "Eppens, Daniel"
Sort by:
Sampling diverse near-optimal solutions via algorithmic quantum annealing
Sampling a diverse set of high-quality solutions for hard optimization problems is of great practical relevance in many scientific disciplines and applications, such as artificial intelligence and operations research. One of the main open problems is the lack of ergodicity, or mode collapse, for typical stochastic solvers based on Monte Carlo techniques leading to poor generalization or lack of robustness to uncertainties. Currently, there is no universal metric to quantify such performance deficiencies across various solvers. Here, we introduce a new diversity measure for quantifying the number of independent approximate solutions for NP-hard optimization problems. Among others, it allows benchmarking solver performance by a required time-to-diversity (TTD), a generalization of often used time-to-solution (TTS). We illustrate this metric by comparing the sampling power of various quantum annealing strategies. In particular, we show that the inhomogeneous quantum annealing schedules can redistribute and suppress the emergence of topological defects by controlling space-time separated critical fronts, leading to an advantage over standard quantum annealing schedules with respect to both TTS and TTD for finding rare solutions. Using path-integral Monte Carlo simulations for up to 1600 qubits, we demonstrate that nonequilibrium driving of quantum fluctuations, guided by efficient approximate tensor network contractions, can significantly reduce the fraction of hard instances for random frustrated 2D spin-glasses with local fields. Specifically, we observe that by creating a class of algorithmic quantum phase transitions, the diversity of solutions can be enhanced by up to 40% with the fraction of hard-to-sample instances reducing by more than 25%.
Approximate optimization, sampling and spin-glass droplets discovery with tensor networks
We devise a deterministic algorithm to efficiently sample high-quality solutions of certain spin-glass systems that encode hard optimization problems. We employ tensor networks to represent the Gibbs distribution of all possible configurations. Using approximate tensor-network contractions, we are able to efficiently map the low-energy spectrum of some quasi-two-dimensional Hamiltonians. We exploit the local nature of the problems to compute spin-glass droplets geometries, which provides a new form of compression of the low-energy spectrum. It naturally extends to sampling, which otherwise, for exact contraction, is \\(\\#\\)P-complete. In particular, for one of the hardest known problem-classes devised on chimera graphs known as deceptive cluster loops and for up to \\(2048\\) spins, we find on the order of \\(10^{10}\\) degenerate ground states in a single run of our algorithm, computing better solutions than have been reported on some hard instances. Our gradient-free approach could provide new insight into the structure of disordered spin-glass complexes, with ramifications both for machine learning and noisy intermediate-scale quantum devices.
Observation of Time-Crystalline Eigenstate Order on a Quantum Processor
Quantum many-body systems display rich phase structure in their low-temperature equilibrium states. However, much of nature is not in thermal equilibrium. Remarkably, it was recently predicted that out-of-equilibrium systems can exhibit novel dynamical phases that may otherwise be forbidden by equilibrium thermodynamics, a paradigmatic example being the discrete time crystal (DTC). Concretely, dynamical phases can be defined in periodically driven many-body localized systems via the concept of eigenstate order. In eigenstate-ordered phases, the entire many-body spectrum exhibits quantum correlations and long-range order, with characteristic signatures in late-time dynamics from all initial states. It is, however, challenging to experimentally distinguish such stable phases from transient phenomena, wherein few select states can mask typical behavior. Here we implement a continuous family of tunable CPHASE gates on an array of superconducting qubits to experimentally observe an eigenstate-ordered DTC. We demonstrate the characteristic spatiotemporal response of a DTC for generic initial states. Our work employs a time-reversal protocol that discriminates external decoherence from intrinsic thermalization, and leverages quantum typicality to circumvent the exponential cost of densely sampling the eigenspectrum. In addition, we locate the phase transition out of the DTC with an experimental finite-size analysis. These results establish a scalable approach to study non-equilibrium phases of matter on current quantum processors.
Exponential suppression of bit or phase flip errors with repetitive error correction
Realizing the potential of quantum computing will require achieving sufficiently low logical error rates. Many applications call for error rates in the \\(10^{-15}\\) regime, but state-of-the-art quantum platforms typically have physical error rates near \\(10^{-3}\\). Quantum error correction (QEC) promises to bridge this divide by distributing quantum logical information across many physical qubits so that errors can be detected and corrected. Logical errors are then exponentially suppressed as the number of physical qubits grows, provided that the physical error rates are below a certain threshold. QEC also requires that the errors are local and that performance is maintained over many rounds of error correction, two major outstanding experimental challenges. Here, we implement 1D repetition codes embedded in a 2D grid of superconducting qubits which demonstrate exponential suppression of bit or phase-flip errors, reducing logical error per round by more than \\(100\\times\\) when increasing the number of qubits from 5 to 21. Crucially, this error suppression is stable over 50 rounds of error correction. We also introduce a method for analyzing error correlations with high precision, and characterize the locality of errors in a device performing QEC for the first time. Finally, we perform error detection using a small 2D surface code logical qubit on the same device, and show that the results from both 1D and 2D codes agree with numerical simulations using a simple depolarizing error model. These findings demonstrate that superconducting qubits are on a viable path towards fault tolerant quantum computing.
Quantum Approximate Optimization of Non-Planar Graph Problems on a Planar Superconducting Processor
We demonstrate the application of the Google Sycamore superconducting qubit quantum processor to combinatorial optimization problems with the quantum approximate optimization algorithm (QAOA). Like past QAOA experiments, we study performance for problems defined on the (planar) connectivity graph of our hardware; however, we also apply the QAOA to the Sherrington-Kirkpatrick model and MaxCut, both high dimensional graph problems for which the QAOA requires significant compilation. Experimental scans of the QAOA energy landscape show good agreement with theory across even the largest instances studied (23 qubits) and we are able to perform variational optimization successfully. For problems defined on our hardware graph we obtain an approximation ratio that is independent of problem size and observe, for the first time, that performance increases with circuit depth. For problems requiring compilation, performance decreases with problem size but still provides an advantage over random guessing for circuits involving several thousand gates. This behavior highlights the challenge of using near-term quantum computers to optimize problems on graphs differing from hardware connectivity. As these graphs are more representative of real world instances, our results advocate for more emphasis on such problems in the developing tradition of using the QAOA as a holistic, device-level benchmark of quantum processors.
Information Scrambling in Computationally Complex Quantum Circuits
Interaction in quantum systems can spread initially localized quantum information into the many degrees of freedom of the entire system. Understanding this process, known as quantum scrambling, is the key to resolving various conundrums in physics. Here, by measuring the time-dependent evolution and fluctuation of out-of-time-order correlators, we experimentally investigate the dynamics of quantum scrambling on a 53-qubit quantum processor. We engineer quantum circuits that distinguish the two mechanisms associated with quantum scrambling, operator spreading and operator entanglement, and experimentally observe their respective signatures. We show that while operator spreading is captured by an efficient classical model, operator entanglement requires exponentially scaled computational resources to simulate. These results open the path to studying complex and practically relevant physical observables with near-term quantum processors.
Nonequilibrium Monte Carlo for unfreezing variables in hard combinatorial optimization
Optimizing highly complex cost/energy functions over discrete variables is at the heart of many open problems across different scientific disciplines and industries. A major obstacle is the emergence of many-body effects among certain subsets of variables in hard instances leading to critical slowing down or collective freezing for known stochastic local search strategies. An exponential computational effort is generally required to unfreeze such variables and explore other unseen regions of the configuration space. Here, we introduce a quantum-inspired family of nonlocal Nonequilibrium Monte Carlo (NMC) algorithms by developing an adaptive gradient-free strategy that can efficiently learn key instance-wise geometrical features of the cost function. That information is employed on-the-fly to construct spatially inhomogeneous thermal fluctuations for collectively unfreezing variables at various length scales, circumventing costly exploration versus exploitation trade-offs. We apply our algorithm to two of the most challenging combinatorial optimization problems: random k-satisfiability (k-SAT) near the computational phase transitions and Quadratic Assignment Problems (QAP). We observe significant speedup and robustness over both specialized deterministic solvers and generic stochastic solvers. In particular, for 90% of random 4-SAT instances we find solutions that are inaccessible for the best specialized deterministic algorithm known as Survey Propagation (SP) with an order of magnitude improvement in the quality of solutions for the hardest 10% instances. We also demonstrate two orders of magnitude improvement in time-to-solution over the state-of-the-art generic stochastic solver known as Adaptive Parallel Tempering (APT).
Hartree-Fock on a superconducting qubit quantum computer
As the search continues for useful applications of noisy intermediate scale quantum devices, variational simulations of fermionic systems remain one of the most promising directions. Here, we perform a series of quantum simulations of chemistry the largest of which involved a dozen qubits, 78 two-qubit gates, and 114 one-qubit gates. We model the binding energy of \\({\\rm H}_6\\), \\({\\rm H}_8\\), \\({\\rm H}_{10}\\) and \\({\\rm H}_{12}\\) chains as well as the isomerization of diazene. We also demonstrate error-mitigation strategies based on \\(N\\)-representability which dramatically improve the effective fidelity of our experiments. Our parameterized ansatz circuits realize the Givens rotation approach to non-interacting fermion evolution, which we variationally optimize to prepare the Hartree-Fock wavefunction. This ubiquitous algorithmic primitive corresponds to a rotation of the orbital basis and is required by many proposals for correlated simulations of molecules and Hubbard models. Because non-interacting fermion evolutions are classically tractable to simulate, yet still generate highly entangled states over the computational basis, we use these experiments to benchmark the performance of our hardware while establishing a foundation for scaling up more complex correlated quantum simulations of chemistry.
Observation of separated dynamics of charge and spin in the Fermi-Hubbard model
Strongly correlated quantum systems give rise to many exotic physical phenomena, including high-temperature superconductivity. Simulating these systems on quantum computers may avoid the prohibitively high computational cost incurred in classical approaches. However, systematic errors and decoherence effects presented in current quantum devices make it difficult to achieve this. Here, we simulate the dynamics of the one-dimensional Fermi-Hubbard model using 16 qubits on a digital superconducting quantum processor. We observe separations in the spreading velocities of charge and spin densities in the highly excited regime, a regime that is beyond the conventional quasiparticle picture. To minimize systematic errors, we introduce an accurate gate calibration procedure that is fast enough to capture temporal drifts of the gate parameters. We also employ a sequence of error-mitigation techniques to reduce decoherence effects and residual systematic errors. These procedures allow us to simulate the time evolution of the model faithfully despite having over 600 two-qubit gates in our circuits. Our experiment charts a path to practical quantum simulation of strongly correlated phenomena using available quantum devices.