Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
2 result(s) for "Equipe NuTox (LNC - U1231) (NUTOX) "
Sort by:
The desert gerbil Psammomys obesus as a model for metformin-sensitive nutritional type 2 diabetes to protect hepatocellular metabolic damage: Impact of mitochondrial redox state
IntroductionWhile metformin (MET) is the most widely prescribed antidiabetic drug worldwide, its beneficial effects in Psammomys obesus (P. obesus), a rodent model that mimics most of the metabolic features of human diabetes, have not been explored thoroughly. Here, we sought to investigate whether MET might improve insulin sensitivity, glucose homeostasis, lipid profile as well as cellular redox and energy balance in P. obesus maintained on a high energy diet (HED).Materials and methodsP. obesus gerbils were randomly assigned to receive either a natural diet (ND) consisting of halophytic plants (control group) or a HED (diabetic group) for a period of 24 weeks. MET (50 mg/kg per os) was administered in both animal groups after 12 weeks of feeding, i.e., the time required for the manifestation of insulin resistance in P. obesus fed a HED. Parallel in vitro experiments were conducted on isolated hepatocytes that were shortly incubated (30 min) with MET and energetic substrates (lactate + pyruvate or alanine, in the presence of octanoate).ResultsIn vivo, MET lowered glycemia, glycosylated haemoglobin, circulating insulin and fatty acid levels in diabetic P. obesus. It also largely reversed HED-induced hepatic lipid alterations. In vitro, MET increased glycolysis but decreased both gluconeogenesis and ketogenesis in the presence of glucogenic precursors and medium-chain fatty acid. Importantly, these changes were associated with an increase in cytosolic and mitochondrial redox states along with a decline in respiration capacity.ConclusionsMET prevents the progression of insulin resistance in diabetes-prone P. obesus, possibly through a tight control of gluconeogenesis and fatty acid beta-oxidation depending upon mitochondrial function. While the latter is increasingly becoming a therapeutic issue in diabetes, the gut microbiota is another promising target that would need to be considered as well.
Recombinant human plasma phospholipid transfer protein (PLTP) to prevent bacterial growth and to treat sepsis
Although plasma phospholipid transfer protein (PLTP) has been mainly studied in the context of atherosclerosis, it shares homology with proteins involved in innate immunity. Here, we produced active recombinant human PLTP (rhPLTP) in the milk of new lines of transgenic rabbits. We successfully used rhPLTP as an exogenous therapeutic protein to treat endotoxemia and sepsis. In mouse models with injections of purified lipopolysaccharides or with polymicrobial infection, we demonstrated that rhPLTP prevented bacterial growth and detoxified LPS. In further support of the antimicrobial effect of PLTP, PLTP-knocked out mice were found to be less able than wild-type mice to fight against sepsis. To our knowledge, the production of rhPLTP to counter infection and to reduce endotoxemia and its harmful consequences is reported here for the first time. This paves the way for a novel strategy to satisfy long-felt, but unmet needs to prevent and treat sepsis.