Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
36 result(s) for "Er-Raki, Salah"
Sort by:
Assessing Irrigation Water Use with Remote Sensing-Based Soil Water Balance at an Irrigation Scheme Level in a Semi-Arid Region of Morocco
This study aims to evaluate a remote sensing-based approach to allow estimation of the temporal and spatial distribution of crop evapotranspiration (ET) and irrigation water requirements over irrigated areas in semi-arid regions. The method is based on the daily step FAO-56 Soil Water Balance model combined with a time series of basal crop coefficients and the fractional vegetation cover derived from high-resolution satellite Normalized Difference Vegetation Index (NDVI) imagery. The model was first calibrated and validated at plot scale using ET measured by eddy-covariance systems over wheat fields and olive orchards representing the main crops grown in the study area of the Haouz plain (central Morocco). The results showed that the model provided good estimates of ET for wheat and olive trees with a root mean square error (RMSE) of about 0.56 and 0.54 mm/day respectively. The model was then used to compare remotely sensed estimates of irrigation requirements (RS-IWR) and irrigation water supplied (WS) at plot scale over an irrigation district in the Haouz plain through three growing seasons. The comparison indicated a large spatio-temporal variability in irrigation water demands and supplies; the median values of WS and RS-IWR were 130 (175), 117 (175) and 118 (112) mm respectively in the 2002–2003, 2005–2006 and 2008–2009 seasons. This could be attributed to inadequate irrigation supply and/or to farmers’ socio-economic considerations and management practices. The findings demonstrate the potential for irrigation managers to use remote sensing-based models to monitor irrigation water usage for efficient and sustainable use of water resources.
Performance Metrics for Soil Moisture Downscaling Methods: Application to DISPATCH Data in Central Morocco
Data disaggregation (or downscaling) is becoming a recognized modeling framework to improve the spatial resolution of available surface soil moisture satellite products. However, depending on the quality of the scale change modeling and on the uncertainty in its input data, disaggregation may improve or degrade soil moisture information at high resolution. Hence, defining a relevant metric for evaluating such methodologies is crucial before disaggregated data can be eventually used in fine-scale studies. In this paper, a new metric, named GDOWN, is proposed to assess the potential gain provided by disaggregation relative to the non-disaggregation case. The performance metric is tested during a four-year period by comparing 1-km resolution disaggregation based on physical and theoretical scale change (DISPATCH) data with the soil moisture measurements collected by six stations in central Morocco. DISPATCH data are obtained every 2–3 days from 40-km resolution SMOS (Soil Moisture Ocean Salinity) and 1-km resolution optical MODIS (Moderate Resolution Imaging Spectroradiometer) data. The correlation coefficient between GDOWN and the disaggregation gain in time series correlation, mean bias and bias in the slope of the linear fit ranges from 0.5 to 0.8. The new metric is found to be a good indicator of the overall performance of DISPATCH. Especially, the sign of GDOWN (positive in the case of effective disaggregation and negative in the opposite case) is independent of the uncertainties in SMOS data and of the representativeness of localized in situ measurements at the downscaling (1 km) resolution. In contrast, the traditional root mean square difference between disaggregation output and in situ measurements is poorly correlated (correlation coefficient of about 0.0) with the disaggregation gain in terms of both time series correlation and bias in the slope of the linear fit. The GDOWN approach is generic and thus could help test a range of downscaling methods dedicated to soil moisture and to other geophysical variables.
Cereal Yield Forecasting with Satellite Drought-Based Indices, Weather Data and Regional Climate Indices Using Machine Learning in Morocco
Accurate seasonal forecasting of cereal yields is an important decision support tool for countries, such as Morocco, that are not self-sufficient in order to predict, as early as possible, importation needs. This study aims to develop an early forecasting model of cereal yields (soft wheat, barley and durum wheat) at the scale of the agricultural province considering the 15 most productive over 2000–2017 (i.e., 15 × 18 = 270 yields values). To this objective, we built on previous works that showed a tight linkage between cereal yields and various datasets including weather data (rainfall and air temperature), regional climate indices (North Atlantic Oscillation in particular), and drought indices derived from satellite observations in different wavelengths. The combination of the latter three data sets is assessed to predict cereal yields using linear (Multiple Linear Regression, MLR) and non-linear (Support Vector Machine, SVM; Random Forest, RF, and eXtreme Gradient Boost, XGBoost) machine learning algorithms. The calibration of the algorithmic parameters of the different approaches are carried out using a 5-fold cross validation technique and a leave-one-out method is implemented for model validation. The statistical metrics of the models are first analyzed as a function of the input datasets that are used, and as a function of the lead times, from 4 months to 2 months before harvest. The results show that combining data from multiple sources outperformed models based on one dataset only. In addition, the satellite drought indices are a major source of information for cereal prediction when the forecasting is carried out close to harvest (2 months before), while weather data and, to a lesser extent, climate indices, are key variables for earlier predictions. The best models can accurately predict yield in January (4 months before harvest) with an R2 = 0.88 and RMSE around 0.22 t. ha−1. The XGBoost method exhibited the best metrics. Finally, training a specific model separately for each group of provinces, instead of one global model, improved the prediction performance by reducing the RMSE by 10% to 35% depending on the provinces. In conclusion, the results of this study pointed out that combining remote sensing drought indices with climate and weather variables using a machine learning technique is a promising approach for cereal yield forecasting.
Remote Sensing in Irrigated Crop Water Stress Assessment
Optimizing water management in agriculture is of crucial importance, especially in arid and semi-arid regions where the existing water shortage is exacerbated by human activities and climate change [...]
Using AquaCrop for Irrigation and water productivity assessment of Table grapes in arid region of Mexico
The aim of this work is to use the AquaCrop model for irrigation and water productivity assessment of Table grapes in arid region of Mexico during 2005 and 2006 cropping seasons. The irrigation efficiency was investigated by comparing the irrigation scheduling design used by the farmer to the AquaCrop model recommendations. Data analysis showed that the farmer irrigates almost every day, which results in the water content in the root zone always exceeding the soil moisture at field capacity (FC). This generates substantial losses of water through deep percolation. By using the AquaCrop model, the optimization of irrigation water scheduling in order to avoid both water stress and deep percolation was about 547 mm and 510 mm, which it is about half of what was applied by the farmer (1006 mm and 930 mm) during 2005 and 2006, respectively. This large difference, lost through deep percolation, reduces the water productivity (WP) by about 45%.
Evaluation of Backscattering Models and Support Vector Machine for the Retrieval of Bare Soil Moisture from Sentinel-1 Data
The main objective of this work was to retrieve surface soil moisture (SSM) by using scattering models and a support vector machine (SVM) technique driven by backscattering coefficients obtained from Sentinel-1 satellite images acquired over bare agricultural soil in the Tensfit basin of Morocco. Two backscattering models were selected in this study due to their wide use in inversion procedures: the theoretical integral equation model (IEM) and the semi-empirical model (Oh). To this end, the sensitivity of the SAR backscattering coefficients at V V ( σ v v ∘ ) and V H ( σ v h ∘ ) polarizations to in situ soil moisture data were analyzed first. As expected, the results showed that over bare soil the σ v v ∘ was well correlated with SSM compared to the σ v h ∘ , which showed more dispersion with correlation coefficients values (r) of about 0.84 and 0.61 for the V V and V H polarizations, respectively. Afterwards, these values of σ v v ∘ were compared to those simulated by the backscatter models. It was found that IEM driven by the measured length correlation L slightly underestimated SAR backscatter coefficients compared to the Oh model with a bias of about − 0.7 dB and − 1.2 dB and a root mean square (RMSE) of about 1.1 dB and 1.5 dB for Oh and IEM models, respectively. However, the use of an optimal value of L significantly improved the bias of IEM, which became near to zero, and the RMSE decreased to 0.9 dB. Then, a classical inversion approach of σ v v ∘ observations based on backscattering model is compared to a data driven retrieval technic (SVM). By comparing the retrieved soil moisture against ground truth measurements, it was found that results of SVM were very encouraging and were close to those obtained by IEM model. The bias and RMSE were about 0.28 vol.% and 2.77 vol.% and − 0.13 vol.% and 2.71 vol.% for SVM and IEM, respectively. However, by taking into account the difficultly of obtaining roughness parameter at large scale, it was concluded that SVM is still a useful tool to retrieve soil moisture, and therefore, can be fairly used to generate maps at such scales.
Vulnerability of Barley, Maize, and Wheat Yields to Variations in Growing Season Precipitation in Morocco
Climate change continues to have adverse effects on crop yields in Africa and globally. In Morocco, rising temperatures and declining precipitation are having daunting effects on the vulnerability of crops. This study examines the vulnerability of barley, maize, and wheat to variations in growing season precipitation and socio-economic proxies of adaptive capacity such as literacy and poverty rates at both national and sub-national scales in Morocco. The methodology is based on a composite vulnerability index (vulnerability is a function of exposure, sensitivity, and adaptive capacity). National and sub-national crop yield data used to compute the sensitivity index were downloaded from FAOSTAT and the global crop yield gaps Atlas. The mean annual growing season precipitation data at both the national and sub-national scales used to compute the exposure index were downloaded from the world bank climate portal. Proxy data for adaptive capacity in the form of literacy and poverty rates were downloaded from the world bank, figshare, and MPR archives. The CANESM model was used to validate the crop yield observations. The results show that wheat shows the lowest vulnerability and the highest adaptive capacity, while maize has the highest vulnerability and lowest adaptive capacity. Sub-nationally, vulnerability indexes decrease northwards while adaptive capacity and normalized growing season precipitation increase northwards. Wheat also shows the lowest vulnerability and highest adaptive capacity and normalized growing season precipitation at each latitude northward. Model validation shows that the models used here reproduce most of the spatial patterns of the crops concerned. These findings have implications for climate change adaptation and climate policy in Morocco, as it becomes evident which of these most cultivated crops are more vulnerable nationally and spatially. These results have implications for future research, as it might be important to understand how these crops perform under growing season temperature as well as what future projections and yield gaps can be observed.
Assessment and Comparison of Satellite-Based Rainfall Products: Validation by Hydrological Modeling Using ANN in a Semi-Arid Zone
Several satellite precipitation estimates are becoming available globally, offering new possibilities for modeling water resources, especially in regions where data are scarce. This work provides the first validation of four satellite precipitation products, CHIRPS v2, Tamsat, Persiann CDR and TerraClimate data, in a semi-arid region of Essaouira city (Morocco). The precipitation data from different satellites are first compared with the ground observations from 4 rain gauges measurement stations using the different comparison methods, namely: Pearson correlation coefficient (r), Bias, mean square error (RMSE), Nash-Sutcliffe efficiency coefficient and mean absolute error (MAE). Secondly, a rainfall-runoff modeling for a basin of the study area (Ksob Basin S = 1483 km2) was carried out based on artificial neural networks type MLP (Multi Layers Perceptron). This model was -then used to evaluate the best satellite products for estimating the discharge. The results indicate that TerraClimate is the most appropriate product for estimating precipitation (R2 = 0.77 and 0.62 for the training and validation phase, respectively). By using this product in combination with hydrological modeling based on ANN (Artificial Neural Network) approach, the simulations of the monthly flow in the watershed were not very satisfactory. However, a clear improvement of the flow estimations occurred when the ESA-CCI (European Space Agency’s (ESA) Climate Change Initiative (CCI)) soil moisture was added (training phase: R2 = 0.88, validation phase: R2 = 0.69 and Nash ≥ 92%). The results offer interesting prospects for modeling the water resources of the coastal zone watersheds with this data.
A Calibration/Disaggregation Coupling Scheme for Retrieving Soil Moisture at High Spatio-Temporal Resolution: Synergy between SMAP Passive Microwave, MODIS/Landsat Optical/Thermal and Sentinel-1 Radar Data
Soil moisture (SM) data are required at high spatio-temporal resolution—typically the crop field scale every 3–6 days—for agricultural and hydrological purposes. To provide such high-resolution SM data, many remote sensing methods have been developed from passive microwave, active microwave and thermal data. Despite the pros and cons of each technique in terms of spatio-temporal resolution and their sensitivity to perturbing factors such as vegetation cover, soil roughness and meteorological conditions, there is currently no synergistic approach that takes advantage of all relevant (passive, active microwave and thermal) remote sensing data. In this context, the objective of the paper is to develop a new algorithm that combines SMAP L-band passive microwave, MODIS/Landsat optical/thermal and Sentinel-1 C-band radar data to provide SM data at the field scale at the observation frequency of Sentinel-1. In practice, it is a three-step procedure in which: (1) the 36 km resolution SMAP SM data are disaggregated at 100 m resolution using MODIS/Landsat optical/thermal data on clear sky days, (2) the 100 m resolution disaggregated SM data set is used to calibrate a radar-based SM retrieval model and (3) the so-calibrated radar model is run at field scale on each Sentinel-1 overpass. The calibration approach also uses a vegetation descriptor as ancillary data that is derived either from optical (Sentinel-2) or radar (Sentinel-1) data. Two radar models (an empirical linear regression model and a non-linear semi-empirical formulation derived from the water cloud model) are tested using three vegetation descriptors (NDVI, polarization ratio (PR) and radar coherence (CO)) separately. Both models are applied over three experimental irrigated and rainfed wheat crop sites in central Morocco. The field-scale temporal correlation between predicted and in situ SM is in the range of 0.66–0.81 depending on the retrieval configuration. Based on this data set, the linear radar model using PR as a vegetation descriptor offers a relatively good compromise between precision and robustness all throughout the agricultural season with only three parameters to set. The proposed synergistical approach combining multi-resolution/multi-sensor SM-relevant data offers the advantage of not requiring in situ measurements for calibration.
Performance Evaluation of the WOFOST Model for Estimating Evapotranspiration, Soil Water Content, Grain Yield and Total Above-Ground Biomass of Winter Wheat in Tensift Al Haouz (Morocco): Application to Yield Gap Estimation
The main goal of this investigation was to evaluate the potential of the WOFOST model for estimating leaf area index (LAI), actual evapotranspiration (ETa), soil moisture content (SM), above-ground biomass levels (TAGP) and grain yield (TWSO) of winter wheat in the semi-arid region of Tensift Al Haouz, Marrakech (central Morocco). An application for the estimation of the Yield Gap is also provided. The model was firstly calibrated based on three fields data during the 2002–2003 and 2003–2004 growing seasons, by using the WOFOST implementation in the Python Crop simulation Environment (PCSE) to optimize the different parameters that provide the minimum difference between the measured and simulated LAI, TAGP, TWSO, SM and ETa. Then, the model validation was performed based on the data from five other wheat fields. The results obtained showed a good performance of the WOFOST model for the estimation of LAI during both growing seasons on all validation fields. The average R2, RSME and NRMSE were 91.4%, 0.57 m2/m2, and 41.4%, respectively. The simulated ETa dynamics also showed a good agreement with the observations by eddy covariance systems. Values of 60% and 72% for R2, 0.8 mm and 0.7 mm for RMSE, 54% and 31% for NRMSE are found for the two validation fields, respectively. The model’s ability to predict soil moisture content was also found to be satisfactory; the two validation fields gave R2 values equal to 48% and 49%, RMSE values equal to 0.03 cm3/cm3 and 0.05 cm3/cm3, NRMSE values equal to 11% and 19%. The calibrated model had a medium performance with respect to the simulation of TWSO (R2 = 42%, RSME = 512 kg/ha, NRMSE = 19%) and TAGP (R2 = 34% and RSME = 936 kg/ha, NRMSE = 16%). After accurate calibration and validation of the WOFOST model, it was used for analyzing the gap yield since this model is able to estimate the potential yield. The WOFOST model allowed a good simulation of the potential yield (7.75 t/ha) which is close to the optimum value of 6.270 t/ha in the region. Yield gap analysis reveals a difference of 5.35 t/ha on average between the observed yields and the potential yields calculated by WOFOST. Such difference is ascribable to many factors such as the crop cycle management, agricultural practices such as water and fertilization supply levels, etc. The various simulations (irrigation scenarios) showed that early sowing is more adequate than late sowing in saving water and obtaining adequate grain yield. Based on various simulations, it has been shown that the early sowing (mid to late December) is more adequate than late sowing with a total amount of water supply of about 430 mm and 322 kg (140 kg of N, 80 kg of P and 102 kg of K) of fertilization to achieve the potential yield. Consequently, the WOFOST model can be considered as a suitable tool for quantitative monitoring of winter wheat growth in the arid and semi-arid regions.