Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
42 result(s) for "Erba, Harry"
Sort by:
Acute myeloid leukaemia
Progress in acute myeloid leukaemia treatment is occurring at an unprecedented pace. The past decade has witnessed an increasingly improved scientific understanding of the underlying biology of acute myeloid leukaemia, leading to enhanced prognostication tools and refined risk assessments, and most especially incorporating measurable residual disease (MRD) into longitudinal risk assessments. The classification of acute myeloid leukaemia has recently been updated by WHO and the International Consensus Classification (ICC). Recommendations for prognostic stratification, response assessment, and MRD determination have also been updated by the European LeukemiaNet. Treatment options have evolved substantially in the last 5 years for patients with newly diagnosed acute myeloid leukaemia, leading to improved outcomes in intensively treated patients and those more appropriate for non-intensive chemotherapy. More effective targeted treatment options in the relapsed setting are also available, further advancing the treatment armamentarium and improving patient outcomes.
Selective inhibition of FLT3 by gilteritinib in relapsed or refractory acute myeloid leukaemia: a multicentre, first-in-human, open-label, phase 1–2 study
Internal tandem duplication mutations in FLT3 are common in acute myeloid leukaemia and are associated with rapid relapse and short overall survival. The clinical benefit of FLT3 inhibitors in patients with acute myeloid leukaemia has been limited by rapid generation of resistance mutations, particularly in codon Asp835 (D835). We aimed to assess the highly selective oral FLT3 inhibitor gilteritinib in patients with relapsed or refractory acute myeloid leukaemia. In this phase 1–2 trial, we enrolled patients aged 18 years or older with acute myeloid leukaemia who either were refractory to induction therapy or had relapsed after achieving remission with previous treatment. Patients were enrolled into one of seven dose-escalation or dose-expansion cohorts assigned to receive once-daily doses of oral gilteritinib (20 mg, 40 mg, 80 mg, 120 mg, 200 mg, 300 mg, or 450 mg). Cohort expansion was based on safety and tolerability, FLT3 inhibition in correlative assays, and antileukaemic activity. Although the presence of an FLT3 mutation was not an inclusion criterion, we required ten or more patients with locally confirmed FLT3 mutations (FLT3mut+) to be enrolled in expansion cohorts at each dose level. On the basis of emerging findings, we further expanded the 120 mg and 200 mg dose cohorts to include FLT3mut+ patients only. The primary endpoints were the safety, tolerability, and pharmacokinetics of gilteritinib. Safety and tolerability were assessed in the safety analysis set (all patients who received at least one dose of gilteritinib). Responses were assessed in the full analysis set (all patients who received at least one dose of study drug and who had at least one datapoint post-treatment). Pharmacokinetics were assessed in a subset of the safety analysis set for which sufficient data for concentrations of gilteritinib in plasma were available to enable derivation of one or more pharmacokinetic variables. This study is registered with ClinicalTrials.gov, number NCT02014558, and is ongoing. Between Oct 15, 2013, and Aug 27, 2015, 252 adults with relapsed or refractory acute myeloid leukaemia received oral gilteritinib once daily in one of seven dose-escalation (n=23) or dose-expansion (n=229) cohorts. Gilteritinib was well tolerated; the maximum tolerated dose was established as 300 mg/day when two of three patients enrolled in the 450 mg dose-escalation cohort had two dose-limiting toxicities (grade 3 diarrhoea and grade 3 elevated aspartate aminotransferase). The most common grade 3–4 adverse events irrespective of relation to treatment were febrile neutropenia (97 [39%] of 252), anaemia (61 [24%]), thrombocytopenia (33 [13%]), sepsis (28 [11%]), and pneumonia (27 [11%]). Commonly reported treatment-related adverse events were diarrhoea (41 [16%] of 252]), fatigue (37 [15%]), elevated aspartate aminotransferase (33 [13%]), and elevated alanine aminotransferase (24 [10%]). Serious adverse events occurring in 5% or more of patients were febrile neutropenia (78 [31%] of 252; five related to treatment), progressive disease (43 [17%]), sepsis (36 [14%]; two related to treatment), pneumonia (27 [11%]), acute renal failure (25 [10%]; five related to treatment), pyrexia (21 [8%]; three related to treatment), bacteraemia (14 [6%]; one related to treatment), and respiratory failure (14 [6%]). 95 people died in the safety analysis set, of which seven deaths were judged possibly or probably related to treatment (pulmonary embolism [200 mg/day], respiratory failure [120 mg/day], haemoptysis [80 mg/day], intracranial haemorrhage [20 mg/day], ventricular fibrillation [120 mg/day], septic shock [80 mg/day], and neutropenia [120 mg/day]). An exposure-related increase in inhibition of FLT3 phosphorylation was noted with increasing concentrations in plasma of gilteritinib. In-vivo inhibition of FLT3 phosphorylation occurred at all dose levels. At least 90% of FLT3 phosphorylation inhibition was seen by day 8 in most patients receiving a daily dose of 80 mg or higher. 100 (40%) of 249 patients in the full analysis set achieved a response, with 19 (8%) achieving complete remission, ten (4%) complete remission with incomplete platelet recovery, 46 (18%) complete remission with incomplete haematological recovery, and 25 (10%) partial remission. Gilteritinib had a favourable safety profile and showed consistent FLT3 inhibition in patients with relapsed or refractory acute myeloid leukaemia. These findings confirm that FLT3 is a high-value target for treatment of relapsed or refractory acute myeloid leukaemia; based on activity data, gilteritinib at 120 mg/day is being tested in phase 3 trials. Astellas Pharma, National Cancer Institute (Leukemia Specialized Program of Research Excellence grant), Associazione Italiana Ricerca sul Cancro.
Blinatumomab for MRD-Negative Acute Lymphoblastic Leukemia in Adults
The addition of blinatumomab to consolidation chemotherapy in adults with B-cell precursor acute lymphoblastic leukemia who had minimal residual disease–negative status after treatment improved overall and relapse-free survival.
In Vitro Pre-Clinical Validation of Suicide Gene Modified Anti-CD33 Redirected Chimeric Antigen Receptor T-Cells for Acute Myeloid Leukemia
Approximately fifty percent of patients with acute myeloid leukemia can be cured with current therapeutic strategies which include, standard dose chemotherapy for patients at standard risk of relapse as assessed by cytogenetic and molecular analysis, or high-dose chemotherapy with allogeneic hematopoietic stem cell transplant for high-risk patients. Despite allogeneic hematopoietic stem cell transplant about 25% of patients still succumb to disease relapse, therefore, novel strategies are needed to improve the outcome of patients with acute myeloid leukemia. We developed an immunotherapeutic strategy targeting the CD33 myeloid antigen, expressed in ~ 85-90% of patients with acute myeloid leukemia, using chimeric antigen receptor redirected T-cells. Considering that administration of CAR T-cells has been associated with cytokine release syndrome and other potential off-tumor effects in patients, safety measures were here investigated and reported. We genetically modified human activated T-cells from healthy donors or patients with acute myeloid leukemia with retroviral supernatant encoding the inducible Caspase9 suicide gene, a ΔCD19 selectable marker, and a humanized third generation chimeric antigen receptor recognizing human CD33. ΔCD19 selected inducible Caspase9-CAR.CD33 T-cells had a 75±3.8% (average ± standard error of the mean) chimeric antigen receptor expression, were able to specifically lyse CD33+ targets in vitro, including freshly isolated leukemic blasts from patients, produce significant amount of tumor-necrosis-factor-alpha and interferon-gamma, express the CD107a degranulation marker, and proliferate upon antigen specific stimulation. Challenging ΔCD19 selected inducible Caspase9-CAR.CD33 T-cells with programmed-death-ligand-1 enriched leukemia blasts resulted in significant killing like observed for the programmed-death-ligand-1 negative leukemic blasts fraction. Since the administration of 10 nanomolar of a non-therapeutic dimerizer to activate the suicide gene resulted in the elimination of only 76.4±2.0% gene modified cells in vitro, we found that co-administration of the dimerizer with either the BCL-2 inhibitor ABT-199, the pan-BCL inhibitor ABT-737, or mafosfamide, resulted in an additive effect up to complete cell elimination. This strategy could be investigated for the safety of CAR T-cell applications, and targeting CD33 could be used as a 'bridge\" therapy for patients coming to allogeneic hematopoietic stem cell transplant, as anti-leukemia activity from infusing CAR.CD33 T-cells has been demonstrated in an ongoing clinical trial. Albeit never performed in the clinical setting, our future plan is to investigate the utility of iC9-CAR.CD33 T-cells as part of the conditioning therapy for an allogeneic hematopoietic stem cell transplant for acute myeloid leukemia, together with other myelosuppressive agents, whilst the activation of the inducible Caspase9 suicide gene would grant elimination of the infused gene modified T-cells prior to stem cell infusion to reduce the risk of engraftment failure as the CD33 is also expressed on a proportion of the donor stem cell graft.
Gilteritinib or Chemotherapy for Relapsed or Refractory FLT3-Mutated AML
Oral use of the selective FLT3 kinase inhibitor gilteritinib in patients who had relapsed or refractory acute myeloid leukemia with FLT3 mutations led to a median overall survival of 9.3 months (vs. 5.6 months with standard chemotherapy) and complete remission with full or partial hematologic recovery in 34.0% of patients (vs. 15.3%).
Ziftomenib in relapsed or refractory acute myeloid leukaemia (KOMET-001): a multicentre, open-label, multi-cohort, phase 1 trial
Ziftomenib (KO-539) is an oral selective menin inhibitor with known preclinical activity in menin-dependent acute myeloid leukaemia models. The primary objective of this study was to determine the recommended phase 2 dose in patients with relapsed or refractory acute myeloid leukaemia based on safety, pharmacokinetics, pharmacodynamics, and preliminary activity. KOMET-001 is a multicentre, open-label, multi-cohort, phase 1/2 clinical trial of ziftomenib in adults with relapsed or refractory acute myeloid leukaemia. Results of the phase 1 study, conducted at 22 hospitals in France, Italy, Spain, and the USA, are presented here and comprise the dose-escalation (phase 1a) and dose-validation and expansion (phase 1b) phases. Eligible patients were aged 18 years or older, had relapsed or refractory acute myeloid leukaemia, and had an Eastern Cooperative Oncology Group performance status of 2 or less. For phase 1a, patients (all molecular subtypes) received ziftomenib (50–1000 mg) orally once daily in 28-day cycles. For phase 1b, patients with NPM1 mutations or with KMT2A rearrangements were randomly assigned (1:1) using third-party interactive response technology to two parallel dose cohorts (200 mg and 600 mg ziftomenib). Primary endpoints were maximum tolerated dose or recommended phase 2 dose in phase 1a, and safety, remission rates, and pharmacokinetics supporting recommended phase 2 dose determination in phase 1b. Analyses were performed in all patients who received at least one dose of ziftomenib (modified intention-to-treat population). Phase 1a/1b is complete. This trial is registered with ClinicalTrials.gov, NCT04067336, and the EU Clinical Trials register, EudraCT 2019-001545-41. From Sept 12, 2019, to Aug 19, 2022, 83 patients received 50–1000 mg ziftomenib (39 [47%] were male and 44 [53%] were female). Median follow-up was 22·3 months (IQR 15·4–30·2). Of 83 patients, the most common grade 3 or worse treatment-emergent adverse events were anaemia (20 [24%]), febrile neutropenia (18 [22%]), pneumonia (16 [19%]), differentiation syndrome (12 [15%]), thrombocytopenia (11 [13%]), and sepsis (ten [12%]). Overall, 68 of 83 patients had serious adverse events, with two reported treatment-related deaths (one differentiation syndrome and one cardiac arrest). Differentiation syndrome rate and severity influenced the decision to halt enrolment of patients with KMT2A rearrangements. In Phase 1b, no responses were reported in patients treated at the 200 mg dose level. At the recommended phase 2 dose of 600 mg, nine (25%) of 36 patients with KMT2A rearrangement or NPM1 mutation had complete remission or complete remission with partial haematologic recovery. Seven (35%) of 20 patients with NPM1 mutation treated at the recommended phase 2 dose had a complete remission. Ziftomenib showed promising clinical activity with manageable toxicity in heavily pretreated patients with relapsed or refractory acute myeloid leukaemia. Phase 2 assessment of ziftomenib combination therapy in the upfront and relapsed or refractory setting is ongoing. Kura Oncology.
Durable Remissions with Ivosidenib in IDH1-Mutated Relapsed or Refractory AML
Among patients with IDH1 -mutated relapsed or refractory leukemia, daily oral ivosidenib, an IDH1 inhibitor, induced molecular clearance of leukemic cells from bone marrow in 21% of patients and was associated with transfusion independence and a low rate of serious adverse events.
Diagnosis and Treatment of Patients With Acute Myeloid Leukemia With Myelodysplasia-Related Changes (AML-MRC)
Abstract Objectives Acute myeloid leukemia (AML) with myelodysplasia-related changes (AML-MRC) represents a high-risk and somewhat diverse subtype of AML, and substantial confusion exists about the pathologic evaluation needed for diagnosis, which can include the patient’s clinical history, cytogenetic analysis, mutational analysis, and/or morphologic evaluation. Treatment decisions based on incomplete or untimely pathology reports may result in the suboptimal treatment of patients with AML-MRC. Methods Using a PubMed search, diagnosis of and treatment options for AML-MRC were investigated. Results This article reviews the current diagnostic criteria for AML-MRC, provides guidance on assessments necessary for an AML-MRC diagnosis, summarizes clinical and prognostic features of AML-MRC, and discusses potential therapies for patients with AML-MRC. In addition to conventional chemotherapy, treatment options include CPX-351, a liposomal encapsulation of daunorubicin/cytarabine approved for treatment of adults with AML-MRC; targeted agents for patients with certain mutations/disease characteristics; and lower-intensity therapies for less fit patients. Conclusions Given the evolving and complex treatment landscape and the high-risk nature of the AML-MRC population, a clear understanding of the pathology information necessary for AML-MRC diagnosis has become increasingly important to help guide treatment decisions and thereby improve patient outcomes.
Ibrutinib–Rituximab or Chemoimmunotherapy for Chronic Lymphocytic Leukemia
Patients 70 years of age or younger with previously untreated CLL were randomly assigned to receive ibrutinib plus rituximab or chemoimmunotherapy with fludarabine, cyclophosphamide, and rituximab. The ibrutinib-based regimen led to prolonged progression-free and overall survival.
Allogeneic hematopoietic cell transplantation compared to chemotherapy consolidation in older acute myeloid leukemia (AML) patients 60–75 years in first complete remission (CR1): an alliance (A151509), SWOG, ECOG-ACRIN, and CIBMTR study
The preferred post-remission therapy for older patients with acute myeloid leukemia (AML) in first complete remission (CR1) remains uncertain. In this retrospective, multicenter study, we compared the outcomes for older AML patients (age 60–77 years) receiving allogeneic hematopoietic cell transplantation (alloHCT) (n = 431) with those treated on prospective National Clinical Trials Network induction and nontransplantation chemotherapy (CT) consolidation trials (n = 211). AlloHCT patients were younger (median age: 64.2 versus 67.9 years, p < 0.001), but more frequently had high-risk AML (high WBC, secondary AML, and unfavorable cytogenetics). Overall survival (OS) was worse in alloHCT during the first 9 months after CR1 (HR = 1.52, p = 0.02), but was significantly better thereafter (HR = 0.53, p < 0.0001) relative to CT. Treatment-related mortality (TRM) following HCT was worse in the first 9 months (HR = 2.8, 95% CI: 1.5–5.2, p = 0.0009), while post-HCT relapse was significantly less frequent beyond 9 months (HR = 0.42, 95% CI: 0.29–0.61, p < 0.0001). Despite higher early TRM, alloHCT recipients had superior long-term OS [29% (24–34%) versus CT 13.8% (9–21%) at 5 years]. Although this is a retrospective analysis with potential biases, it indicates that alloHCT led to heightened early risks from TRM, yet reduced relapse and superior long-term survival relative to CT in older AML patients in CR1.