Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
11
result(s) for
"Ernenwein, Jean-Pierre"
Sort by:
Simulations of the muon flux sensitivity to rock perturbation associated to hydrogeological processes
by
Gaffet, Stéphane
,
Busto, José
,
Ernenwein, Jean-Pierre
in
Aeration zone
,
Aquifers
,
Computer simulation
2014
Muon tomography is a method to investigate the in-situ rock density. It is based on the absorption of cosmic-ray muons according to the quantity of matter (thickness and density). Numerical simulations are performed in order to estimate the expected muon flux in LSBB Underground Research Laboratory (URL) (Rustrel, France). The aim of the muon measurements in the underground galleries of this laboratory is to characterize the spatial and temporal density variations caused by water transfer in the unsaturated zone of the Fontaine-de-Vaucluse karstic aquifer.
Journal Article
Astroclimatic Characterization of Vallecitos: A Candidate Site for the Cherenkov Telescope Array at San Pedro Mártir
by
Cieslar, Marek
,
Frayn, Ilse Plauchu
,
H. Lee, William
in
High Energy Physics - Experiment
,
Physics
,
site testing
2016
We conducted an 18 month long study of the weather conditions of the Vallecitos, a proposed site in México to harbor the northern array of the Cherenkov Telescope Array (CTA). It is located in Sierra de San Pedro Mártir (SPM) a few kilometers away from Observatorio Astronómico Nacional. The study is based on data collected by the ATMOSCOPE, a multi-sensor instrument measuring the weather and sky conditions, which was commissioned and built by the CTA Consortium. Additionally, we compare the weather conditions of the optical observatory at SPM to the Vallecitos regarding temperature, humidity, and wind distributions. It appears that the excellent conditions at the optical observatory benefit from the presence of microclimate established in the Vallecitos.
Journal Article
Deep-Sea Bioluminescence Blooms after Dense Water Formation at the Ocean Surface
2013
The deep ocean is the largest and least known ecosystem on Earth. It hosts numerous pelagic organisms, most of which are able to emit light. Here we present a unique data set consisting of a 2.5-year long record of light emission by deep-sea pelagic organisms, measured from December 2007 to June 2010 at the ANTARES underwater neutrino telescope in the deep NW Mediterranean Sea, jointly with synchronous hydrological records. This is the longest continuous time-series of deep-sea bioluminescence ever recorded. Our record reveals several weeks long, seasonal bioluminescence blooms with light intensity up to two orders of magnitude higher than background values, which correlate to changes in the properties of deep waters. Such changes are triggered by the winter cooling and evaporation experienced by the upper ocean layer in the Gulf of Lion that leads to the formation and subsequent sinking of dense water through a process known as \"open-sea convection\". It episodically renews the deep water of the study area and conveys fresh organic matter that fuels the deep ecosystems. Luminous bacteria most likely are the main contributors to the observed deep-sea bioluminescence blooms. Our observations demonstrate a consistent and rapid connection between deep open-sea convection and bathypelagic biological activity, as expressed by bioluminescence. In a setting where dense water formation events are likely to decline under global warming scenarios enhancing ocean stratification, in situ observatories become essential as environmental sentinels for the monitoring and understanding of deep-sea ecosystem shifts.
Journal Article
Publisher Correction: Resolving acceleration to very high energies along the jet of Centaurus A
by
Clemens Hoischen
,
Kirsty Feijen
,
S. Pita
in
639/33/34/4118
,
639/33/34/864
,
Humanities and Social Sciences
2020
An Amendment to this paper has been published and can be accessed via a link at the top of the paper.An Amendment to this paper has been published and can be accessed via a link at the top of the paper.
Journal Article
Astroclimatic Characterization of Vallecitos
by
Cieslar, Marek
,
Frayn, Ilse Plauchu
,
Ochoa, Jose Luis
in
Astronomical Instrumentation, Telescopes, Observatories, and Site Characterization
2016
We conducted an 18 month long study of the weather conditions of the Vallecitos, a proposed site in México to harbor the northern array of the Cherenkov Telescope Array (CTA). It is located in Sierra de San Pedro Mártir (SPM) a few kilometers away from Observatorio Astronómico Nacional. The study is based on data collected by the ATMOSCOPE, a multi-sensor instrument measuring the weather and sky conditions, which was commissioned and built by the CTA Consortium. Additionally, we compare the weather conditions of the optical observatory at SPM to the Vallecitos regarding temperature, humidity, and wind distributions. It appears that the excellent conditions at the optical observatory benefit from the presence of microclimate established in the Vallecitos.
Journal Article
Studies of Gamma-Ray Shower Reconstruction Using Deep Learning
by
Bylund, Tomas
,
Punch, Michael
,
Mezek, Gašper Kukec
in
Artificial neural networks
,
Deep learning
,
Gamma rays
2021
The Cosmic Multiperspective Event Tracker (CoMET) R&D project aims to optimize the techniques for the detection of soft-spectrum sources through very-high-energy gamma-ray observations using particle detectors (called ALTO detectors), and atmospheric Cherenkov light collectors (called CLiC detectors). The accurate reconstruction of the energies and maximum depths of gamma-ray events using a surface array only, is an especially challenging problem at low energies, and the focus of the project. In this contribution, we leverage Convolutional Neural Networks (CNNs) using the ALTO detectors only, to try to improve reconstruction performance at lower energies ( < 1 TeV ) as compared to the SEMLA analysis procedure, which is a more traditional method using manually derived features.
The CoMET multiperspective event tracker for wide field-of-view gamma-ray astronomy
2021
The CoMET R&D project focuses on the development of a new technique for the observation of very high-energy (VHE) \\(\\gamma\\)-rays from the ground at energies above ~200 GeV, thus covering emission from soft-spectrum sources. The CoMET array under study combines 1242 particle detector units, distributed over a circular area of ~160 m in diameter and placed at a very high altitude (5.1 km), with atmospheric Cherenkov light detectors. The atmospheric Cherenkov light detectors, inspired by the \"HiSCORE\" design and improved for the energy range of interest, can be operated together with the particle detectors during clear nights. As such, the instrument becomes a Cosmic Multiperspective Event Tracker (CoMET). CoMET is expected to improve the reconstruction of arrival direction, energy and shower maximum determination for \\(\\gamma\\)-ray-induced showers during darkness, which is crucial for the reduction of background contamination from cosmic rays. Prototypes of both particle and atmospheric Cherenkov light detectors are already installed at Linnaeus University in Sweden, while in parallel we simulate the full detector response and estimate the reconstruction improvement for \\(\\gamma\\)-ray events. In this contribution, we present Monte-Carlo simulations of the detector array, consisting of CORSIKA shower simulations and custom detector response simulations, together with the coupling of particle and atmospheric Cherenkov light information, the reconstruction strategy of the complete array and the detection performance on point-like VHE \\(\\gamma\\)-ray sources.
Very-High-Energy gamma-ray astronomy with the ALTO observatory
by
Punch, Michael
,
Becherini, Yvonne
,
Ernenwein, Jean-Pierre
in
Active galactic nuclei
,
Astronomy
,
Binary stars
2017
ALTO is a concept/project in the exploratory phase since 2013 aiming to build a wide-field VHE gamma-ray observatory at very high altitude in the Southern hemisphere. The operation of such an observatory will complement the Northern hemisphere observations performed by HAWC and will make possible the exploration of the central region of our Galaxy and the hunt for PeVatrons, and to search for extended Galactic objects such as the Vela Supernova Remnant and the Fermi bubbles. The ALTO project is aiming for a substantial improvement of the Water Cherenkov Detection Technique by increasing the altitude of the observatory in order to lower the energy threshold, by using a layer of scintillator below the water tank to optimize the S/B discrimination, by minimizing the size of the tanks and having a more compact array to sample the air-shower footprints with better precision, and by using precise electronics which will provide time-stamped waveforms to improve the angular and energy resolution. ALTO is designed to have as low an energy threshold as possible so as to act as a fast trigger alert to other observatories, primarily to the Southern part of CTA, for transient Galactic and extra-galactic phenomena. The wide FoV resulting from the detection technique allows the survey of a large portion of the sky continuously, thus giving the possibility to access emission from Gamma-Ray Bursts, Active Galactic Nuclei and X-ray binary flares, and extended emissions of both Galactic (Vela SNR, Fermi bubbles) and extra-galactic (AGN radio lobes) origin. The ALTO observatory will be composed of about a thousand detection units, each of which consists of a Water Cherenkov Detector positioned above a liquid Scintillation Detector, distributed within an area of about 200 m in diameter. The project is in the design study phase which is soon to be followed by a prototyping phase.
Instrumentation for comparing night sky quality and atmospheric conditions of CTA site candidates
by
Cieslar, Marek
,
Dominik, Michal
,
Häfner, Dennis
in
Consortia
,
Cosmic ray showers
,
Infrared detectors
2015
Many atmospheric and climatic criteria have to be taken into account for the selection of a suitable site for the next generation of imaging air-shower Cherenkov telescopes, the \"Cherenkov Telescope Array\" CTA. Such data are not available with sufficient precision, thus a comparison of the proposed sites and final decision based on a comprehensive characterization is impossible. Identical cross-calibrated instruments have been developed which allow for precise comparison between sites, the cross-validation of existing data, and the ground-validation of satellite data. The site characterization work package of the CTA consortium opted to construct and deploy 9 copies of an autonomous multi-purpose weather sensor, incorporating an infrared cloud sensor, a newly developed sensor for measuring the light of the night sky, and an All-Sky-Camera, the whole referred to as Autonomous Tool for Measuring Observatory Site COnditions PrEcisely (ATMOSCOPE). We present here the hardware that was combined into the ATMOSCOPE and characterize its performance.
Astroclimatic Characterization of Vallecitos: A candidate site for the Cherenkov Telescope Array at San Pedro Martir
2016
We conducted an 18 month long study of the weather conditions of the Vallecitos, a proposed site in Mexico to harbor the northern array of the Cherenkov Telescope Array (CTA). It is located in Sierra de San Pedro Martir (SPM) a few kilometers away from Observatorio Astronómico Nacional. The study is based on data collected by the ATMOSCOPE, a multi-sensor instrument measuring the weather and sky conditions, which was commissioned and built by the CTA Consortium. Additionally, we compare the weather conditions of the optical observatory at SPM to the Vallecitos regarding temperature, humidity, and wind distributions. It appears that the excellent conditions at the optical observatory benefit from the presence of microclimate established in the Vallecitos.