Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
448
result(s) for
"Errico, Francesco"
Sort by:
Free D-aspartate modulates the expression of proteins linked to schizophrenia and autism spectrum disorder during early postnatal life
by
Carrillo, Federica
,
di Vito, Raffaella
,
Usiello, Alessandro
in
Amino acids
,
Animals
,
Animals, Newborn
2025
D-aspartate is an endogenous agonist of NMDA and mGlu5 receptors, with a distinctive spatiotemporal expression profile that peaks in the prenatal and early postnatal brain. This suggests a critical role for D-aspartate metabolism in modulating neurodevelopmental processes linked to glutamatergic neurotransmission. However, the precise mechanisms through which D-aspartate exerts its effects remain unclear. To elucidate the molecular pathways orchestrated by early D-aspartate signalling, we employed a knock-in mouse model characterized by constitutive D-aspartate depletion due to the prenatal expression of its degradative enzyme, D-aspartate oxidase. Using an advanced quantitative proteomic approach based on Tandem Mass Tag isobaric labelling and nano-liquid chromatography coupled with high-resolution tandem mass spectrometry, we investigated the proteomic variations induced by D-aspartate depletion during postnatal brain development, comparing
Ddo
knock-in mice with their wild-type littermates. Our findings reveal that D-aspartate modulates the neonatal expression of proteins involved in glutamatergic neurotransmission, nervous system development, and cytoskeleton organization. Moreover, proteomic analysis identified a subset of D-aspartate-regulated proteins mapping molecular pathways associated with autism spectrum disorder and schizophrenia. These findings offer new perspectives on the complex protein networks influenced by D-aspartate metabolism in the developing brain and highlight its potential impact on cerebral function in health and psychiatric disorders.
Journal Article
New Evidence on the Role of D-Aspartate Metabolism in Regulating Brain and Endocrine System Physiology: From Preclinical Observations to Clinical Applications
2020
The endogenous amino acids serine and aspartate occur at high concentrations in free D-form in mammalian organs, including the central nervous system and endocrine glands. D-serine (D-Ser) is largely localized in the forebrain structures throughout pre and postnatal life. Pharmacologically, D-Ser plays a functional role by acting as an endogenous coagonist at N-methyl-D-aspartate receptors (NMDARs). Less is known about the role of free D-aspartate (D-Asp) in mammals. Notably, D-Asp has a specific temporal pattern of occurrence. In fact, free D-Asp is abundant during prenatal life and decreases greatly after birth in concomitance with the postnatal onset of D-Asp oxidase expression, which is the only enzyme known to control endogenous levels of this molecule. Conversely, in the endocrine system, D-Asp concentrations enhance after birth during its functional development, thereby suggesting an involvement of the amino acid in the regulation of hormone biosynthesis. The substantial binding affinity for the NMDAR glutamate site has led us to investigate the in vivo implications of D-Asp on NMDAR-mediated responses. Herein we review the physiological function of free D-Asp and of its metabolizing enzyme in regulating the functions of the brain and of the neuroendocrine system based on recent genetic and pharmacological human and animal studies.
Journal Article
High performance liquid chromatography determination of l-glutamate, l-glutamine and glycine content in brain, cerebrospinal fluid and blood serum of patients affected by Alzheimer’s disease
2021
Altered glutamatergic neurotransmission is thought to play a crucial role in the progression of Alzheimer’s disease (AD). Accordingly, the identification of peculiar biochemical patterns reflecting AD-related synaptopathy in blood and cerebrospinal fluid (CSF) could have relevant diagnostic and prognostic implications. In this study, we measured by High-Performance Liquid Chromatography the amount of glutamate, glutamine and glycine in post-mortem brain samples of AD patients, as well as in CSF and blood serum of drug-free subjects encompassing the whole AD clinical spectrum (pre-clinical AD, n = 18, mild cognitive impairment-AD, n = 29, dementia AD, n = 30). Interestingly, we found that glutamate and glycine levels, as well as total tau protein content, were significantly reduced in the superior frontal gyrus of patients with AD, compared with non-demented controls. No significant change was also found in glutamate, glutamine and glycine CSF concentrations between AD patients and neurological controls. Remarkably, serum glutamate levels were significantly higher in patients affected by early AD phases compared to controls, and were negatively correlated with CSF total tau levels. Conversely, serum glutamine concentration was significantly increased in AD patients, with a negative correlation with MMSE performances. Finally, we reported a significant correlation between serum l-glutamate concentrations and CDR score in female but not in male cohort of AD subjects. Overall, our results suggest that serum glutamate and glutamine levels in AD patients could vary across disease stages, potentially reflecting the progressive alteration of glutamatergic signaling during neurodegenerative processes.
Journal Article
New insights on the role of free d-aspartate in the mammalian brain
by
Usiello, Alessandro
,
Errico, Francesco
,
Nisticò, Robert
in
Amino acids
,
Amphetamine - pharmacology
,
Amphetamines
2012
Free
d
-aspartate (
d
-Asp) occurs in substantial amounts in the brain at the embryonic phase and in the first few postnatal days, and strongly decreases in adulthood. Temporal reduction of
d
-Asp levels depends on the postnatal onset of
d
-aspartate oxidase (DDO) activity, the only enzyme able to selectively degrade this
d
-amino acid. Several results indicate that
d
-Asp binds and activates
N
-methyl-
d
-aspartate receptors (NMDARs). Accordingly, recent studies have demonstrated that deregulated, higher levels of
d
-Asp, in knockout mice for
Ddo
gene and in
d
-Asp-treated mice, modulate hippocampal NMDAR-dependent long-term potentiation (LTP) and spatial memory. Moreover, similarly to
d
-serine, administration of
d
-Asp to old mice is able to rescue the physiological age-related decay of hippocampal LTP. In agreement with a neuromodulatory action of
d
-Asp on NMDARs, increased levels of this
d
-amino acid completely suppress long-term depression at corticostriatal synapses and attenuate the prepulse inhibition deficits produced in mice by the psychotomimetic drugs, amphetamine and MK-801. Based on the evidence which points to the ability of
d
-Asp to act as an endogenous agonist on NMDARs and considering the abundance of
d
-Asp during prenatal and early life, future studies will be crucial to address the effect of this molecule in the developmental processes of the brain controlled by the activation of NMDARs.
Journal Article
D-aspartate oxidase gene duplication induces social recognition memory deficit in mice and intellectual disabilities in humans
2022
The
D-aspartate oxidase
(
DDO
) gene encodes the enzyme responsible for the catabolism of D-aspartate, an atypical amino acid enriched in the mammalian brain and acting as an endogenous NMDA receptor agonist. Considering the key role of NMDA receptors in neurodevelopmental disorders, recent findings suggest a link between D-aspartate dysmetabolism and schizophrenia. To clarify the role of D-aspartate on brain development and functioning, we used a mouse model with constitutive
Ddo
overexpression and D-aspartate depletion. In these mice, we found reduced number of BrdU-positive dorsal pallium neurons during corticogenesis, and decreased cortical and striatal gray matter volume at adulthood. Brain abnormalities were associated with social recognition memory deficit at juvenile phase, suggesting that early D-aspartate occurrence influences neurodevelopmental related phenotypes. We corroborated this hypothesis by reporting the first clinical case of a young patient with severe intellectual disability, thought disorders and autism spectrum disorder symptomatology, harboring a duplication of a chromosome 6 region, including the entire
DDO
gene.
Journal Article
78,000-year-old record of Middle and Later Stone Age innovation in an East African tropical forest
2018
The Middle to Later Stone Age transition in Africa has been debated as a significant shift in human technological, cultural, and cognitive evolution. However, the majority of research on this transition is currently focused on southern Africa due to a lack of long-term, stratified sites across much of the African continent. Here, we report a 78,000-year-long archeological record from Panga ya Saidi, a cave in the humid coastal forest of Kenya. Following a shift in toolkits ~67,000 years ago, novel symbolic and technological behaviors assemble in a non-unilinear manner. Against a backdrop of a persistent tropical forest-grassland ecotone, localized innovations better characterize the Late Pleistocene of this part of East Africa than alternative emphases on dramatic revolutions or migrations.
Most of the archaeological record of the Middle to Later Stone Age transition comes from southern Africa. Here, Shipton et al. describe the new site Panga ya Saidi on the coast of Kenya that covers the last 78,000 years and shows gradual cultural and technological change in the Late Pleistocene.
Journal Article
The levels of the NMDA receptor co-agonist D-serine are reduced in the substantia nigra of MPTP-lesioned macaques and in the cerebrospinal fluid of Parkinson’s disease patients
2019
Dysfunction of NMDA receptor (NMDAR)-mediated transmission is supposed to contribute to the motor and non-motor symptoms of Parkinson’s Disease (PD), and to L-DOPA-induced dyskinesia. Besides the main agonist L-glutamate, two other amino acids in the atypical D-configuration, D-serine and D-aspartate, activate NMDARs. In the present work, we investigated the effect of dopamine depletion on D-amino acids metabolism in the brain of MPTP-lesioned
Macaca mulatta
, and in the serum and cerebrospinal fluid of PD patients. We found that MPTP treatment increases D-aspartate and D-serine in the monkey putamen while L-DOPA rescues both D-amino acids levels. Conversely, dopaminergic denervation is associated with selective D-serine reduction in the
substantia nigra
. Such decrease suggests that the beneficial effect of D-serine adjuvant therapy previously reported in PD patients may derive from the normalization of endogenous D-serine levels and consequent improvement of nigrostriatal hypoglutamatergic transmission at glycine binding site. We also found reduced D-serine concentration in the cerebrospinal fluid of L-DOPA-free PD patients. These results further confirm the existence of deep interaction between dopaminergic and glutamatergic neurotransmission in PD and disclose a possible direct influence of D-amino acids variations in the changes of NMDAR transmission occurring under dopamine denervation and L-DOPA therapy.
Journal Article
Serum dysregulation of serine and glycine metabolism as predictive biomarker for cognitive decline in frail elderly subjects
by
Valente, Enza Maria
,
Di Maio, Anna
,
Imarisio, Alberto
in
631/378/1595/2167
,
631/378/340
,
692/53/2421
2024
Frailty is a common age-related clinical syndrome characterized by a decline in the function of multiple organ systems, increased vulnerability to stressors, and a huge socio-economic burden. Despite recent research efforts, the physiopathological mechanisms underlying frailty remain elusive and biomarkers able to predate its occurrence in the early stages are still lacking. Beyond its physical component, cognitive decline represents a critical domain of frailty associated with higher risk of adverse health outcomes. We measured by High-Performance Liquid Chromatography (HPLC) a pool of serum amino acids including L-glutamate, L-aspartate, glycine, and D-serine, as well as their precursors L-glutamine, L-asparagine, and L-serine in a cohort of elderly subjects encompassing the entire continuum from fitness to frailty. These amino acids are known to orchestrate excitatory and inhibitory neurotransmission, and in turn, to play a key role as intermediates of energy homeostasis and in liver, kidney, muscle, and immune system metabolism. To comprehensively assess frailty, we employed both the Edmonton Frail Scale (EFS), as a practical tool to capture the multidimensionality of frailty, and the frailty phenotype, as a measure of physical function. We found that D-serine and D-/Total serine ratio were independent predictors of EFS but not of physical frailty. Furthermore, higher levels of glycine, glycine/L-serine and D-/Total serine were associated with worse cognition and depressive symptoms in the frail group. These findings suggest that changes in peripheral glycine and serine enantiomers homeostasis may represent a novel biochemical correlate of frailty.
Journal Article
Quantitative determination of free D-Asp, L-Asp and N-methyl-D-aspartate in mouse brain tissues by chiral separation and Multiple Reaction Monitoring tandem mass spectrometry
by
Squillace, Marta
,
Usiello, Alessandro
,
Amoresano, Angela
in
Amino acids
,
Analysis
,
Analytical chemistry
2017
Several studies have suggested that free d-Asp has a crucial role in N-methyl d-Asp receptor-mediated neurotransmission playing very important functions in physiological and pathological processes. This paper describes the development of an analytical procedure for the direct and simultaneous determination of free d-Asp, l-Asp and N-methyl d-Asp in specimens of different mouse brain tissues using chiral LC-MS/MS in Multiple Reaction Monitoring scan mode. After comparing three procedures and different buffers and extraction solvents, a simple preparation procedure was selected the analytes of extraction. The method was validated by analyzing l-Asp, d-Asp and N-methyl d-Asp recovery at different spiked concentrations (50, 100 and 200 pg/μl) yielding satisfactory recoveries (75-110%), and good repeatability. Limits of detection (LOD) resulted to be 0.52 pg/μl for d-Asp, 0.46 pg/μl for l-Asp and 0.54 pg/μl for NMDA, respectively. Limits of quantification (LOQ) were 1.57 pg/μl for d-Asp, 1.41 pg/μl for l-Asp and 1.64 pg/μl for NMDA, respectively. Different concentration levels were used for constructing the calibration curves which showed good linearity. The validated method was then successfully applied to the simultaneous detection of d-Asp, l-Asp and NMDA in mouse brain tissues. The concurrent, sensitive, fast, and reproducible measurement of these metabolites in brain tissues will be useful to correlate the amount of free d-Asp with relevant neurological processes, making the LC-MS/MS MRM method well suited, not only for research work but also for clinical analyses.
Journal Article
Nusinersen mitigates neuroinflammation in severe spinal muscular atrophy patients
2023
Background
Neuroinflammation contributes to the onset and progression of neurodegenerative diseases, but has not been specifically investigated in patients affected by severe and milder forms of spinal muscular atrophy (SMA).
Methods
In this two-center retrospective study, we investigated signatures of neuroinflammation in forty-eight pediatric male and female SMA1 (
n
= 18), male and female SMA2 (
n
= 19), and female SMA3 (
n
= 11) patients, as well as in a limited number of male and female non-neurological control subjects (
n
= 4). We employed a Bio-Plex multiplex system based on xMAP technology and performed targeted quantitative analysis of a wide range of pro- and anti-inflammatory cytokines (chemokines, interferons, interleukins, lymphokines and tumor necrosis factors) and neurotrophic factors in the cerebrospinal fluid (CSF) of the study cohort before and after Nusinersen treatment at loading and maintenance stages.
Results
We find a significant increase in the levels of several pro-inflammatory cytokines (IL-6, IFN-γ, TNF-α, IL-2, IL-8, IL-12, IL-17, MIP-1α, MCP-1, and Eotaxin) and neurotrophic factors (PDGF-BB and VEGF) in the CSF of SMA1 patients relative to SMA2 and SMA3 individuals, who display levels in the range of controls. We also find that treatment with Nusinersen significantly reduces the CSF levels of some but not all of these neuroinflammatory molecules in SMA1 patients. Conversely, Nusinersen increases the CSF levels of proinflammatory G-CSF, IL-8, MCP-1, MIP-1α, and MIP-1β in SMA2 patients and decreases those of anti-inflammatory IL-1ra in SMA3 patients.
Conclusions
These findings highlight signatures of neuroinflammation that are specifically associated with severe SMA and the neuro-immunomodulatory effects of Nusinersen therapy.
Plain Language Summary
Spinal muscular atrophy (SMA) is an inherited disorder which leads to muscle weakening. Three therapies have recently been developed, including Nusinersen. However, the effect of SMA on the immune system and how this could be affected by Nusinersen is unknown. The immune system protects the body from infection and, in some disorders, misfunctions and damages the body in the absence of infection. Here, we analyze components of the immune system in body fluids from SMA patients before and after treatment with Nusinersen. The immune system was found to be more active in patients with more severe disease. Treatment with Nusinersen reduced the levels of some, but not all of these, components of the immune system. Thus, treatments that impact the immune system might improve symptoms in patients with SMA.
Nuzzo, Russo, Errico, D’Amico et al. investigate neuroinflammation in forty-eight pediatric spinal muscular atrophy patients before and after Nusinersen treatment. They find signatures of neuroinflammation that are specifically associated with severe disease and show that Nusinersen therapy has neuro-immunomodulatory effects.
Journal Article