Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
48
result(s) for
"Esaki, Nobuyoshi"
Sort by:
Bacterial cysteine desulfurases: versatile key players in biosynthetic pathways of sulfur-containing biofactors
2011
Cysteine desulfurases are pyridoxal 5'-phosphate-dependent homodimeric enzymes that catalyze the conversion of L-cysteine to L-alanine and sulfane sulfur via the formation of a protein-bound cysteine persulfide intermediate on a conserved cysteine residue. The enzymes are capable of donating the persulfide sulfur atoms to a variety of biosynthetic pathways for sulfur-containing biofactors, such as iron-sulfur clusters, thiamin, transfer RNA thionucleosides, biotin, and lipoic acid. The enormous advances in biochemical and structural studies of these biosynthetic pathways over the past decades provide an opportunity for detailed understanding of the nature of the excellent sulfur transfer mechanism of cysteine desulfurases.[PUBLICATION ABSTRACT]
Journal Article
Proteomic studies of an Antarctic cold-adapted bacterium, Shewanella livingstonensis Ac10, for global identification of cold-inducible proteins
by
Kawamoto, Jun
,
Kitagawa, Masanari
,
Kurihara, Tatsuo
in
Adaptation, Physiological
,
Adaptation, Physiological - genetics
,
Antarctic Regions
2007
Proteomic analysis of a cold-adapted bacterium, Shewanella livingstonensis Ac10, isolated from Antarctic seawater was carried out to elucidate its cold-adaptation mechanism. The cells were grown at 4°C and 18°C, and soluble and membrane proteins were analyzed by two-dimensional gel electrophoresis. At 4°C, the relative abundance of 47 soluble proteins and five membrane proteins increased more than twofold, and these proteins were analyzed by peptide mass fingerprinting. Twenty-six soluble proteins and two membrane proteins were identified. These included proteins involved in RNA synthesis and folding (RpoA, GreA, and CspA), protein synthesis and folding (TufB, Efp, LysU, and Tig), membrane transport (OmpA and OmpC), and motility (FlgE and FlgL). Cold-inducible RpoA, GreA, and CspA may be required for efficient and accurate transcription and proper folding of RNA at low temperatures, where base pairing of nucleic acids is stable and undesired secondary structures of RNA tend to form. Tig is supposed to have peptidyl-prolyl cis-trans isomerase activity and facilitate proper folding of proteins at low temperatures. The cold induction of OmpA and OmpC is likely to counteract the low diffusion rate of solutes at low temperatures and enables the efficient uptake of nutrients. These results provided many clues to understand microbial cold-adaptation mechanisms.
Journal Article
Identification of cold-inducible inner membrane proteins of the psychrotrophic bacterium, Shewanella livingstonensis Ac10, by proteomic analysis
by
Kawamoto, Jun
,
Kurihara, Tatsuo
,
Park, Jungha
in
Adaptation
,
Adaptation, Physiological - genetics
,
Animal, plant and microbial ecology
2012
Shewanella livingstonensis
Ac10 is a psychrotrophic Gram-negative bacterium that grows at temperatures close to 0°C. Previous proteomic studies of this bacterium identified cold-inducible soluble proteins and outer membrane proteins that could possibly be involved in its cold adaptation (Kawamoto et al. in Extremophiles 11:819–826,
2007
). In this study, we established a method for separating the inner and outer membranes by sucrose density gradient ultracentrifugation and performed proteomic studies of the inner membrane fraction. The cells were grown at temperatures of 4 and 18°C, and phospholipid-enriched inner membrane fractions were obtained. Two-dimensional polyacrylamide gel electrophoresis and peptide mass fingerprinting analysis of the proteins identified 14 cold-inducible proteins (more than a 2-fold increase at 4°C). Six of these proteins were predicted to be inner membrane proteins. Two predicted periplasmic proteins, 5 predicted cytoplasmic proteins, and 1 predicted outer membrane protein were also found in the inner membrane fraction, suggesting their association with the inner membrane proteins and/or lipids. These cold-inducible proteins included proteins that are presumed to be involved in chemotaxis (AtoS and PspA), membrane protein biogenesis (DegP, SurA, and FtsY), and morphogenesis (MreB). These findings provide a basis for further studies on the cold-adaptation mechanism of this bacterium.
Journal Article
Cys-328 of IscS and Cys-63 of IscU Are the Sites of Disulfide Bridge Formation in a Covalently Bound IscS/IscU Complex: Implications for the Mechanism of Iron-Sulfur Cluster Assembly
by
Takahashi, Yasuhiro
,
Tokumoto, Umechiyo
,
Kato, Shin-ichiro
in
Alanine - chemistry
,
Amino acids
,
Atoms
2002
IscS and IscU from Escherichia coli cooperate with each other in the biosynthesis of iron-sulfur clusters. IscS catalyzes the desulfurization of L-cysteine to produce L-alanine and sulfur. Cys-328 of IscS attacks the sulfur atom of L-cysteine, and the sulfane sulfur derived from L-cysteine binds to the Sγ atom of Cys-328. In the course of the cluster assembly, IscS and IscU form a covalent complex, and a sulfur atom derived from L-cysteine is transferred from IscS to IscU. The covalent complex is thought to be essential for the cluster biogenesis, but neither the nature of the bond connecting IscS and IscU nor the residues involved in the complex formation have been determined, which have thus far precluded the mechanistic analyses of the cluster assembly. We here report that a covalent bond is formed between Cys-328 of IscS and Cys-63 of IscU. The bond is a disulfide bond, not a polysulfide bond containing sulfane sulfur between the two cysteine residues. We also found that Cys-63 of IscU is essential for the IscU-mediated activation of IscS: IscU induced a six-fold increase in the cysteine desulfurase activity of IscS, whereas the IscU mutant with a serine substitution for Cys-63 had no effect on the activity. Based on these findings, we propose a mechanism for an early stage of iron-sulfur cluster assembly: the sulfur transfer from IscS to IscU is initiated by the attack of Cys-63 of IscU on the Sγ atom of Cys-328 of IscS that is bound to sulfane sulfur derived from L-cysteine.
Journal Article
Enhanced selenium tolerance and accumulation in transgenic Arabidopsis expressing a mouse selenocysteine lyase
by
Kurihara, T
,
Pilon, M
,
Esaki, N
in
Adaptation to environment and cultivation conditions
,
Adaptation, Physiological
,
Adaptation, Physiological - drug effects
2003
Selenium (Se) toxicity is thought to be due to nonspecific incorporation of selenocysteine (Se-Cys) into proteins, replacing Cys. In an attempt to direct Se flow away from incorporation into proteins, a mouse (Mus musculus) Se-Cys lyase (SL) was expressed in the cytosol or chloroplasts of Arabidopsis. This enzyme specifically catalyzes the decomposition of Se-Cys into elemental Se and alanine. The resulting SL transgenics were shown to express the mouse enzyme in the expected intracellular location, and to have SL activities up to 2-fold (cytosolic lines) or 6-fold (chloroplastic lines) higher than wild-type plants. Se incorporation into proteins was reduced 2-fold in both types of SL transgenics, indicating that the approach successfully redirected Se flow in the plant. Both the cytosolic and chloroplastic SL plants showed enhanced shoot Se concentrations, up to 1.5-fold compared with wild type. The cytosolic SL plants showed enhanced tolerance to Se, presumably because of their reduced protein Se levels. Surprisingly, the chloroplastic SL transgenics were less tolerant to Se, indicating that (over) production of elemental Se in the chloroplast is toxic. Expression of SL in the cytosol may be a useful approach for the creation of plants with enhanced Se phytoremediation capacity.
Journal Article
Characterization of a Nifs-like Chloroplast Protein from Arabidopsis. Implications for Its Role in Sulfur and Selenium Metabolism
by
Garifullina, Gulnara F.
,
Jason L. Burkhead
,
Elizabeth A. H. Pilon-Smits
in
Amino Acid Sequence
,
amino acid sequences
,
Arabidopsis
2002
NifS-like proteins catalyze the formation of elemental sulfur (S) and alanine from cysteine (Cys) or of elemental selenium (Se) and alanine from seleno-Cys. Cys desulfurase activity is required to produce the S of iron (Fe)-S clusters, whereas seleno-Cys lyase activity is needed for the incorporation of Se in selenoproteins. In plants, the chloroplast is the location of (seleno) Cys formation and a location of Fe-S cluster formation. The goal of these studies was to identify and characterize chloroplast NifS-like proteins. Using seleno-Cys as a substrate, it was found that 25% to 30% of the NifS activity in green tissue in Arabidopsis is present in chloroplasts. A cDNA encoding a putative chloroplast NifS-like protein, AtCpNifS, was cloned, and its chloroplast localization was confirmed using immunoblot analysis and in vitro import. AtCpNIFS is expressed in all major tissue types. The protein was expressed in Escherichia coli and purified. The enzyme contains a pyridoxal 5′ phosphate cofactor and is a dimer. It is a type II NifS-like protein, more similar to bacterial seleno-Cys lyases than to Cys desulfurases. The enzyme is active on both seleno-Cys and Cys but has a much higher activity toward the Se substrate. The possible role of AtCpNifS in plastidic Fe-S cluster formation or in Se metabolism is discussed.
Journal Article
Cold adaptation of eicosapentaenoic acid-less mutant of Shewanella livingstonensis Ac10 involving uptake and remodeling of synthetic phospholipids containing various polyunsaturated fatty acids
by
Kawamoto, Jun
,
Kurihara, Tatsuo
,
Hosokawa, Masashi
in
Action of physical and chemical agents on bacteria
,
Adaptation, Physiological
,
Bacteria
2008
An Antarctic psychrotrophic bacterium, Shewanella livingstonensis Ac10, produces cis-5,8,11,14,17-eicosapentaenoic acid (EPA), a long-chain polyunsaturated fatty acid (LPUFA), as a component of membrane phospholipids at low temperatures. The EPA-less mutant generated by disruption of the EPA synthesis gene becomes cold-sensitive. We studied whether the cold sensitivity could be suppressed by supplementation of various LPUFAs. The EPA-less mutant was cultured at 6°C in the presence of synthetic phosphatidylethanolamines (PEs) that contained oleic acid at the sn-1 position and various C20 fatty acids with different numbers of double bonds from zero to five or cis-4,7,10,13,16,19-docosahexaenoic acid (DHA) at the sn-2 position. Mass spectrometric analyses revealed that all these fatty acids became components of various PE and phosphatidylglycerol species together with shorter partner fatty acids, indicating that large-scale remodeling followed the incorporation of synthetic PEs. As the number of double bonds in the sn-2 acyl chain decreased, the growth rate decreased and the cells became filamentous. The growth was restored to the wild-type level only when the medium was supplemented with phospholipids containing EPA or DHA. We found that about a half of DHA was converted into EPA. The results suggest that intact EPA is best required for cold adaptation of this bacterium.
Journal Article
The iscS Gene is Essential for the Biosynthesis of 2-Selenouridine in tRNA and the Selenocysteine-Containing Formate Dehydrogenase H
by
Takahashi, Yasuhiro
,
Tokumoto, Umechiyo
,
Kato, Shin-ichiro
in
2-selenouridine
,
Biochemistry
,
Biological Sciences
2002
Three NifS-like proteins, IscS, CSD, and CsdB, from Escherichia coli catalyze the removal of sulfur and selenium from L-cysteine and L-selenocysteine, respectively, to form L-alanine. These enzymes are proposed to function as sulfur-delivery proteins for iron-sulfur cluster, thiamin, 4-thiouridine, biotin, and molybdopterin. Recently, it was reported that selenium mobilized from free selenocysteine is incorporated specifically into a selenoprotein and tRNA in vivo, supporting the involvement of the NifS-like proteins in selenium metabolism. We here report evidence that a strain lacking IscS is incapable of synthesizing 5-methylaminomethyl-2-selenouridine and its precursor 5-methylaminomethyl-2-thiouridine (mnm5s
2U) in tRNA, suggesting that the sulfur atom released from L-cysteine by the action of IscS is incorporated into mnm5s
2U. In contrast, neither CSD nor CsdB was essential for production of mnm5s
2Uand 5-methylaminomethyl-2-selenouridine. The lack of IscS also caused a significant loss of the selenium-containing polypeptide of formate dehydrogenase H. Together, these results suggest a dual function of IscS in sulfur and selenium metabolism.
Journal Article
Cold-active DnaK of an Antarctic psychrotroph Shewanella sp. Ac10 supporting the growth of dnaK-null mutant of Escherichia coli at cold temperatures
by
Kulakova, Ljudmila
,
Yoshimura, Tohru
,
Galkin, Andrey
in
Adenosine Triphosphatases - chemistry
,
Adenosine Triphosphatases - physiology
,
Amino Acid Sequence
2005
Shewanella sp. Ac10 is a psychrotrophic bacterium isolated from the Antarctica that actively grows at such low temperatures as 0 degrees C. Immunoblot analyses showed that a heat-shock protein DnaK is inducibly formed by the bacterium at 24 degrees C, which is much lower than the temperatures causing heat shock in mesophiles such as Escherichia coli. We found that the Shewanella DnaK (SheDnaK) shows much higher ATPase activity at low temperatures than the DnaK of E. coli (EcoDnaK): a characteristic of a cold-active enzyme. The recombinant SheDnaK gene supported neither the growth of a dnaK-null mutant of E. coli at 43 degrees C nor lambda phage propagation at an even lower temperature, 30 degrees C. However, the recombinant SheDnaK gene enabled the E. coli mutant to grow at 15 degrees C. This is the first report of a DnaK supporting the growth of a dnaK-null mutant at low temperatures.
Journal Article
Physiological role of d-amino acid-N-acetyltransferase of Saccharomyces cerevisiae: detoxification of d-amino acids
by
Yoshimura, Tohru
,
Uo, Takuma
,
Yow, Geok-Yong
in
Amino acids
,
Amino Acids - metabolism
,
Amino-Acid N-Acetyltransferase
2006
Saccharomyces cerevisiae is sensitive to d-amino acids: those corresponding to almost all proteinous l-amino acids inhibit the growth of yeast even at low concentrations (e.g. 0.1 mM). We have determined that d-amino acid-N-acetyltransferase (DNT) of the yeast is involved in the detoxification of d-amino acids on the basis of the following findings. When the DNT gene was disrupted, the resulting mutant was far less tolerant to d-amino acids than the wild type. However, when the gene was overexpressed with a vector plasmid p426Gal1 in the wild type or the mutant S. cerevisiae as a host, the recombinant yeast, which was found to show more than 100 times higher DNT activity than the wild type, was much more tolerant to d-amino acids than the wild type. We further confirmed that, upon cultivation with d-phenylalanine, N-acetyl-d-phenylalanine was accumulated in the culture but not in the wild type and hpa3Δ cells overproducing DNT cells. Thus, d-amino acids are toxic to S. cerevisiae but are detoxified with DNT by N-acetylation preceding removal from yeast cells.
Journal Article