Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
83
result(s) for
"Espen, Luca"
Sort by:
Biostimulants on Crops: Their Impact under Abiotic Stress Conditions
by
Franzoni, Giulia
,
Ferrante, Antonio
,
Espen, Luca
in
Abiotic stress
,
abiotic stresses
,
Agricultural production
2022
Biostimulants are agronomic tools that have been gaining importance in the reduction of fertilizer applications. They can improve the yield of cropping systems or preventing crop yield losses under abiotic stresses. Biostimulants can be composed of organic and inorganic materials and most of the components are still unknown. The characterization of the molecular mechanism of action of biostimulants can be obtained using the omics approach, which includes the determination of transcriptomic, proteomic, and metabolomic changes in treated plants. This review reports an overview of the biostimulants, taking stock on the recent molecular studies that are contributing to clarify their action mechanisms. The omics studies can provide an overall evaluation of a crop’s response, connecting the molecular changes with the physiological pathways activated and the performance with or without stress conditions. The multiple responses of plants treated with biostimulants must be correlated with the phenotype changes. In this context, it is also crucial to design an adequate experimental plan and statistical data analysis, in order to find robust correlations between biostimulant treatments and crop performance.
Journal Article
Nitrogen Uptake in Plants: The Plasma Membrane Root Transport Systems from a Physiological and Proteomic Perspective
by
Espen, Luca
,
Prinsi, Bhakti
,
Muratore, Chiara
in
Adenosine triphosphatase
,
Agricultural land
,
Agriculture
2021
Nitrogen nutrition in plants is a key determinant in crop productivity. The availability of nitrogen nutrients in the soil, both inorganic (nitrate and ammonium) and organic (urea and free amino acids), highly differs and influences plant physiology, growth, metabolism, and root morphology. Deciphering this multifaceted scenario is mandatory to improve the agricultural sustainability. In root cells, specific proteins located at the plasma membrane play key roles in the transport and sensing of nitrogen forms. This review outlines the current knowledge regarding the biochemical and physiological aspects behind the uptake of the individual nitrogen forms, their reciprocal interactions, the influences on root system architecture, and the relations with other proteins sustaining fundamental plasma membrane functionalities, such as aquaporins and H+-ATPase. This topic is explored starting from the information achieved in the model plant Arabidopsis and moving to crops in agricultural soils. Moreover, the main contributions provided by proteomics are described in order to highlight the goals and pitfalls of this approach and to get new hints for future studies.
Journal Article
Morphological and Proteomic Responses of Eruca sativa Exposed to Silver Nanoparticles or Silver Nitrate
by
Domingo, Guido
,
Marsoni, Milena
,
Bracale, Marcella
in
Analysis of Variance
,
Arabidopsis
,
Arabidopsis thaliana
2013
Silver nanoparticles (AgNPs) are widely used in commercial products, and there are growing concerns about their impact on the environment. Information about the molecular interaction of AgNPs with plants is lacking. To increase our understanding of the mechanisms involved in plant responses to AgNPs and to differentiate between particle specific and ionic silver effects we determined the morphological and proteomic changes induced in Eruca sativa (commonly called rocket) in response to AgNPs or AgNO3. Seedlings were treated for 5 days with different concentrations of AgNPs or AgNO3. A similar increase in root elongation was observed when seedlings were exposed to 10 mg Ag L(1) of either PVP-AgNPs or AgNO3. At this concentration we performed electron microscopy investigations and 2-dimensional electrophoresis (2DE) proteomic profiling. The low level of overlap of differentially expressed proteins indicates that AgNPs and AgNO3 cause different plant responses. Both Ag treatments cause changes in proteins involved in the redox regulation and in the sulfur metabolism. These responses could play an important role to maintain cellular homeostasis. Only the AgNP exposure cause the alteration of some proteins related to the endoplasmic reticulum and vacuole indicating these two organelles as targets of the AgNPs action. These data add further evidences that the effects of AgNPs are not simply due to the release of Ag ions.
Journal Article
Time-Course of Metabolic and Proteomic Responses to Different Nitrate/Ammonium Availabilities in Roots and Leaves of Maize
by
Espen, Luca
,
Prinsi, Bhakti
in
Adaptation, Physiological - drug effects
,
Ammonium Compounds - metabolism
,
Energy Metabolism - drug effects
2018
The availability of nitrate and ammonium significantly affects plant growth. Co-provision of both nutrients is generally the best nutritional condition, due to metabolic interactions not yet fully elucidated. In this study, maize grown in hydroponics was exposed to different nitrogen (N) availabilities, consisting of nitrate, ammonium and co-provision. Roots and leaves were analyzed after 6, 30, and 54 h by biochemical evaluations and proteomics. The ammonium-fed plants showed the lowest biomass accumulation and the lowest ratio of inorganic to organic N content, suggesting a metabolic need to assimilate ammonium that was not evident in plants grown in co-provision. The N sources differently affected the root proteome, inducing changes in abundance of proteins involved in N and carbon (C) metabolisms, cell water homeostasis, and cell wall metabolism. Notable among these changes was that some root enzymes, such as asparagine synthetase, phosphoenolpyruvate (PEP) carboxylase, and formate dehydrogenase showed a relevant upsurge only under the sole ammonium nutrition. However, the leaf proteome appeared mainly influenced by total N availability, showing changes in the abundance of several proteins involved in photosynthesis and in energy metabolism. Overall, the study provides novel information about the biochemical determinants involved in plant adaptation to different N mineral forms.
Journal Article
Insight into Composition of Bioactive Phenolic Compounds in Leaves and Flowers of Green and Purple Basil
2019
Basil (Ocimum basilicum L.) is a culinary, medicinal, and ornamental plant appreciated for its antioxidant properties, mainly attributed to high content of rosmarinic acid. This species also includes purple varieties, characterized by the accumulation of anthocyanins in leaves and flowers. In this work, we compared the main morphological characteristics, the antioxidant capacity and the chemical composition in leaves, flowers, and corollas of green (‘Italiano Classico’) and purple (‘Red Rubin’ and ‘Dark Opal’) basil varieties. The LC-ESI-MS/MS analysis of individual compounds allowed quantifying 17 (poly)phenolic acids and 18 flavonoids, differently accumulated in leaves and flowers of the three varieties. The study revealed that in addition to rosmarinic acid, basil contains several members of the salvianolic acid family, only scarcely descripted in this species, as well as, especially in flowers, simple phenolic acids, such as 4-hydroxybenzoic acid and salvianic acid A. Moreover, the study revealed that purple leaves mainly contain highly acylated anthocyanins, while purple flowers accumulate anthocyanins with low degree of decoration. Overall, this study provides new biochemical information about the presence of not yet characterized bioactive compounds in basil that could contribute to boosting the use of this crop and to gaining new knowledge about the roles of these compounds in plant physiology.
Journal Article
Root proteomic and metabolic analyses reveal specific responses to drought stress in differently tolerant grapevine rootstocks
by
Scienza, Attilio
,
Espen, Luca
,
Prinsi, Bhakti
in
Adaptation
,
Agriculture
,
biochemical pathways
2018
Background
Roots play a central role in plant response to water stress (WS). They are involved in its perception and signalling to the leaf as well as in allowing the plant to adapt to maintaining an adequate water balance. Only a few studies have investigated the molecular/biochemical responses to WS in roots of perennial plants, such as grapevine. This study compares two grapevine rootstock genotypes (i.e. 101.14 and M4) with different tolerance to WS, evaluating the responses at proteomic and metabolite levels.
Results
WS induced changes in the abundance of several proteins in both genotypes (17 and 22% of the detected proteins in 101.14 and M4, respectively). The proteomic analysis revealed changes in many metabolic pathways that fitted well with the metabolite data. M4 showed metabolic responses which were potentially able to counteract the WS effects, such as the drop in cell turgor, increased oxidative stress and loss of cell structure integrity/functionality. However, in 101.14 it was evident that the roots were suffering more severely from these effects. We found that many proteins classified as active in energy metabolism, hormone metabolism, protein, secondary metabolism and stress functional classes showed particular differences between the two rootstocks.
Conclusion
The proteomic/metabolite comparative analysis carried out provides new information on the possible biochemical and molecular strategies adopted by grapevine roots to counteract WS. Although further work is needed to define in detail the role(s) of the proteins and metabolites that characterize WS response, this study, involving the M4 rootstock genotype, highlights that osmotic responses, modulations of C metabolism, mitochondrial functionality and some specific responses to stress occurring in the roots play a primary role in
Vitis
spp. tolerance to this type of abiotic stress.
Journal Article
Nitrogen Starvation and Nitrate or Ammonium Availability Differently Affect Phenolic Composition in Green and Purple Basil
2020
Basil (Ocimum basilicum L.) comprises green and purple cultivars, worldwide cultivated and appreciated for high contents of rosmarinic acid and anthocyanins, respectively. Although nitrogen (N) fertilization is needed for high yields, in basil it could have detrimental effects on the accumulation of phenolic compounds. In this study, plants of the cultivars ‘Italiano Classico’ (green) and ‘Red Rubin’ (purple) were grown in hydroponics and subjected to different nutritional treatments, consisting in N starvation, and nitrate (NO3−) or ammonium (NH4+) nutrition. Plant growth and nutritional status, estimated by the contents of NO3−, NH4+, and amino acids in roots and leaves, were evaluated and put in relation with quality traits of basil leaves, such as chlorophyll content, antioxidant capacity, total phenols, the activity of phenylalanine ammonia-lyase, and the concentrations of individual (poly)phenolic acids and flavonoids. This study reveals that N starvation, as well as the availability of the two inorganic N forms, differently affect the phenolic composition in the two cultivars. Compared to plants grown in NO3− availability, in NH4+ availability, green basil showed a higher content of (poly)phenolic acids, while in purple basil, an increase in the contents of anthocyanins was detected. Overall, the study suggests that the management of NH4+ supply could contribute to enhance crop quality in hydroponics, and provides new knowledge about the relationship between N nutrition and phenolic metabolism in basil.
Journal Article
Grapevine Rootstocks Differently Affect Physiological and Molecular Responses of the Scion under Water Deficit Condition
2021
Grapevine rootstocks play a pivotal role in plant responses to water deficiency (WD); therefore, the selection of new genotypes is a promising strategy for future agricultural managements aimed to cope with climate changes. Recent studies reinforced the central role of the root system in modulating WD responses, as it not only controls water uptake and transport to the leaves, but it also participates in stress perception and stress signalling to the shoot. The present work evaluated the performance of the 101.14 and M4 rootstocks in graft combination with the cultivar Cabernet Sauvignon (Cab) by assessing some of the canonical molecular, biochemical and physiological responses induced by WD. The autograft Cab/Cab was also included in the experimental design as a control. Under WD, Cab/M4 showed a greater capacity to sustain CO2 assimilation rate (An) and stomatal conductance (gs), while limiting the decrease of leaf potential (Ψleaf) compared with the other graft combinations. The enhanced adaptability of Cab/M4 to WD was also supported by the higher uptake of water from the soil, estimated by measuring the daily water lost of plants, and by the reduced effect of the drought treatment on the total root biomass. Quantification of ABA in both root and leaf organs revealed a reduced accumulation in Cab/M4 plants, thus confirming the lower sensitivity of the Cab/M4 combination to water deficit. At the molecular level, the expression of selected stress-responsive ABA-related genes was investigated, including genes involved in ABA biosynthesis (VviNCED3), ABA signalling (VviPP2C9, VviPP2C4,VviSnRk2.6), regulation of gene expression (VviABF2) and stomatal opening (VviSIRK, VviMYB60). Results indicated a tight correlation between the level of gene expression and of ABA accumulation in roots and leaves, suggesting that ABA synthesis and signalling were attenuated in Cab/M4 as compared with Cab/101.14 and Cab/Cab. As a whole, our data demonstrated the capacity of M4 to satisfy the water demand of the scion under limited water availability, as revealed by delayed stomatal closure and higher photosynthetic activity. Importantly, these physiological adaptive traits related to attenuated ABA-mediated responses in roots and leaves.
Journal Article
On the role of ethylene, auxin and a GOLVEN-like peptide hormone in the regulation of peach ripening
by
Noferini, Massimo
,
Costa, Guglielmo
,
Trainotti, Livio
in
1-methylcyclopropene
,
Agriculture
,
Amino acids
2016
Background
In melting flesh peaches, auxin is necessary for system-2 ethylene synthesis and a cross-talk between ethylene and auxin occurs during the ripening process. To elucidate this interaction at the transition from maturation to ripening and the accompanying switch from system-1 to system-2 ethylene biosynthesis, fruits of melting flesh and stony hard genotypes, the latter unable to produce system-2 ethylene because of insufficient amount of auxin at ripening, were treated with auxin, ethylene and with 1-methylcyclopropene (1-MCP), known to block ethylene receptors. The effects of the treatments on the different genotypes were monitored by hormone quantifications and transcription profiling.
Results
In melting flesh fruit, 1-MCP responses differed according to the ripening stage. Unexpectedly, 1-MCP induced genes also up-regulated by ripening, ethylene and auxin, as CTG134, similar to GOLVEN (GLV) peptides, and repressed genes also down-regulated by ripening, ethylene and auxin, as CTG85, a calcineurin B-like protein.
The nature and transcriptional response of CTG134 led to discover a rise in free auxin in 1-MCP treated fruit. This increase was supported by the induced transcription of CTG475, an IAA-amino acid hydrolase. A melting flesh and a stony hard genotype, differing for their ability to synthetize auxin and ethylene amounts at ripening, were used to study the fine temporal regulation and auxin responsiveness of genes involved in the process. Transcriptional waves showed a tight interdependence between auxin and ethylene actions with the former possibly enhanced by the GLV CTG134. The expression of genes involved in the regulation of ripening, among which are several transcription factors, was similar in the two genotypes or could be rescued by auxin application in the stony hard. Only GLV CTG134 expression could not be rescued by exogenous auxin.
Conclusions
1-MCP treatment of peach fruit is ineffective in delaying ripening because it stimulates an increase in free auxin. As a consequence, a burst in ethylene production speeding up ripening occurs. Based on a network of gene transcriptional regulations, a model in which appropriate level of CTG134 peptide hormone might be necessary to allow the correct balance between auxin and ethylene for peach ripening to occur is proposed.
Journal Article
The Delay of Raphanus raphanistrum subsp. sativus (L.) Domin Seed Germination Induced by Coumarin Is Mediated by a Lower Ability to Sustain the Energetic Metabolism
2022
In the present study, the mode of action of coumarin using the germination process as a target was investigated. A dose–response curve, built using a range of concentrations from 0 to 800 µM, allowed us to identify a key concentration (400 µM) inhibiting the germination process, reducing its speed without compromising seed development. Successively, short time-course (0–48 h) experiments were carried out to evaluate the biochemical and metabolic processes involved in coumarin-induced germination delay. The results pointed out that coumarin delayed K+, Ca2+, and Mg2+ reabsorption, suggesting a late membrane reorganisation. Similarly, seed respiration was inhibited during the first 24 h but recovered after 48 h. Those results agreed with ATP levels, which followed the same trend. In addition, the untargeted metabolomic analysis allowed to identify, among the pathways significantly impacted by the treatment, amino acids metabolism, the TCA cycle, and the glyoxylate pathway. The results highlighted that coumarin was able to interact with membranes reorganisation, delaying them and reducing the production of ATP, as also supported by pathway analysis and cell respiration. The in vivo 31P-NMR analysis supported the hypothesis that the concentration chosen was able to affect plant metabolism, maintaining, on the other hand, its viability, which is extremely important for studying natural compounds’ mode of action.
Journal Article