Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
LanguageLanguage
-
SubjectSubject
-
Item TypeItem Type
-
DisciplineDiscipline
-
YearFrom:-To:
-
More FiltersMore FiltersIs Peer Reviewed
Done
Filters
Reset
166
result(s) for
"Estrada-Peña, Agustín"
Sort by:
A review of canine babesiosis: the European perspective
by
Sainz, Ángel
,
Solano-Gallego, Laia
,
Estrada-Peña, Agustín
in
Animals
,
Babesia
,
Babesia - classification
2016
Canine babesiosis is a significant tick-borne disease caused by various species of the protozoan genus
Babesia
. Although it occurs worldwide, data relating to European infections have now been collected for many years. These data have boosted the publication record and increased our working knowledge of these protozoan parasites. Both the large and small forms of
Babesia
species (
B. canis
,
B. vogeli
,
B. gibsoni
, and
B. microti
-like isolates also referred to as \"
B. vulpes
\" and \"
Theileria annae
\") infect dogs in Europe, and their geographical distribution, transmission, clinical signs, treatment, and prognosis vary widely for each species. The goal of this review is to provide veterinary practitioners with practical guidelines for the diagnosis, treatment and prevention of babesiosis in European dogs. Our hope is that these guidelines will answer the most frequently asked questions posed by veterinary practitioners.
Journal Article
Climate and the Parasite Paradox: Tick–Host Networks Depend on Gradients of Environmental Overlap
2025
This study investigates how climate gradients shape tick–host associations, testing the hypothesis that variations in climate leverage some associations, which can be ecosystem-specific. To test this hypothesis, we modelled tick–host associations across the Western Palearctic using climatic variables and a large dataset of georeferenced tick (seven species, n = 23,462) and vertebrate host records (n = 6.5 million across 162 species aggregated into 50 genera). Niche overlap with hosts is highly variable but consistently significant (p < 0.05) in every tested ecosystem of the target territory. Montane grasslands exhibit the lowest values of tick–host niche overlap, meaning that they support the smallest but still resilient set of available hosts. Host phylogenetic diversity (PD) depends on the ecosystem rather than tick species; PD is lowest in montane grasslands (supporting previous results) and in the case of D. reticulatus in savannas and scrubland. Nestedness of tick–host networks, known to be related to the resilience of parasite–host networks, is highest in climatically extreme ecosystems, reflecting adaptability of tick–host networks, as measured by niche overlap on modelled distribution. Multidimensional scaling confirms that host community composition and niche overlap vary significantly across ecosystems, supporting the hypothesis of host rewiring under diverse climatic conditions. These findings may have important implications for the concept of community composition and the circulation of tick-borne pathogens.
Journal Article
Guideline for veterinary practitioners on canine ehrlichiosis and anaplasmosis in Europe
by
Sainz, Ángel
,
Harrus, Shimon
,
Miró, Guadalupe
in
Anaplasma
,
Anaplasma - genetics
,
Anaplasma - isolation & purification
2015
Canine ehrlichiosis and anaplasmosis are important tick-borne diseases with a worldwide distribution. Information has been continuously collected on these infections in Europe, and publications have increased in recent years. Prevalence rates are high for Ehrlichia and Anaplasma spp. infections in dogs from different European countries. The goal of this article was to provide a practical guideline for veterinary practitioners on the diagnosis, treatment, and prevention of ehrlichiosis and anaplasmosis in dogs from Europe. This guideline is intended to answer the most common questions on these diseases from a practical point of view.
Journal Article
Widespread Detection of Multiple Strains of Crimean-Congo Hemorrhagic Fever Virus in Ticks, Spain
by
Sierra, María José
,
Negredo, Anabel
,
San Miguel, Lucía García
in
Animals
,
arboviruses
,
Cattle
2022
Human cases of Crimean-Congo hemorrhagic fever (CCHF) were first detected in Spain in 2016. National human and animal health authorities organized a large, multidisciplinary study focusing on ticks as sentinels to determine the nationwide distribution of ticks with CCHF virus. Ticks were collected from animals and vegetation, samples pooled (12,584 ticks; 4,556 pools), and molecular methods used to look for the virus. We detected the virus in 135 pools from most of the regions studied, indicating that it is widespread in Spain. We found sequences of CCHF virus genotypes I, III, and IV in the tick species collected, most commonly in Hyalomma lusitanicum, suggesting this tick has a prominent role in the virus's natural cycle. The red deer (Cervus elaphus) was the host that most frequently yielded positive ticks. Our study highlights the need for larger studies in Spain to ascertain the complete risk to public health.
Journal Article
Worldwide host associations of the tick genus Ixodes suggest relationships based on environmental sharing rather than on co-phylogenetic events
by
Nava, Santiago
,
Guglielmone, Alberto A.
,
Estrada-Peña, Agustín
in
Adaptation
,
Adaptation (Physiology)
,
Adaptation, Physiological
2023
Background
This study aims to capture how ticks of the genus
Ixodes
gained their hosts using network constructs. We propose two alternative hypotheses, namely, an ecological background (ticks and hosts sharing environmentally available conditions) and a phylogenetic one, in which both partners co-evolved, adapting to existing environmental conditions after the association took place.
Methods
We used network constructs linking all the known pairs of associations between each species and stage of ticks with families and orders of hosts. Faith’s phylogenetic diversity was used to evaluate the phylogenetic distance of the hosts of each species and changes occurring in the ontogenetic switch between consecutive stages of each species (or the extent of the changes in phylogenetic diversity of hosts for consecutive stages of the same species).
Results
We report highly clustered associations among
Ixodes
ticks and hosts, supporting the influence of the ecological adaptation and coexistence, demonstrating a lack of strict tick-host coevolution in most cases, except for a few species. Keystone hosts do not exist in the relationships between
Ixodes
and vertebrates because of the high redundancy of the networks, further supporting an ecological relationship between both types of partners. The ontogenetic switch of hosts is high for species with enough data, which is another potential clue supporting the ecological hypothesis. Other results suggest that the networks displaying tick-host associations are different according to the biogeographical realms. Data for the Afrotropical region reveal a lack of extensive surveys, while results for the Australasian region are suggestive of a mass extinction of vertebrates. The Palearctic network is well developed, with many links demonstrating a highly modular set of relationships.
Conclusions
With the obvious exceptions of
Ixodes
species restricted to one or a few hosts, the results point to an ecological adaptation. Even results on species linked to groups of ticks (such as
Ixodes uriae
and the pelagic birds or the bat-tick species) are suggestive of a previous action of environmental forces.
Graphical Abstract
Journal Article
Towards New Horizons: Climate Trends in Europe Increase the Environmental Suitability for Permanent Populations of Hyalomma marginatum (Ixodidae)
by
Fernández-Ruiz, Natalia
,
Estrada-Peña, Agustín
in
20th century
,
Biogeography
,
Central European region
2021
Ticks and tick-borne pathogens are changing their current distribution, presumably due to the impact of the climate trends. On a large scale, these trends are changing the environmental suitability of Hyalomma marginatum, the main vector of several pathogens affecting human health. We generated annual models of environmental suitability for the tick in the period 1970–2018, using harmonic regression-derived data of the daily maximum and minimum temperature, soil moisture and water vapor deficit. The results demonstrate an expansion of the suitable area in Mediterranean countries, southeast central Europe and south of the Balkans. Also, the models allowed us to interpret the impact of the ecological variables on these changes. We deduced that (i) maximum temperature was significant for all of the biogeographical categories, (ii) soil humidity has an influence in the Mediterranean climate areas, and (iii) the minimum temperature and deficit water vapor did not influence the environmental suitability of the species. The conclusions clearly show that climate change could create new areas in Europe with suitable climates for H. marginatum, while keeping its “historical” distribution in the Mediterranean. Therefore, it is necessary to further explore possible risk areas for H. marginatum and its associated pathogens.
Journal Article
Predicting the distribution of Ixodes ricinus and Dermacentor reticulatus in Europe: a comparison of climate niche modelling approaches
2023
Background
The ticks
Ixodes ricinus
and
Dermacentor reticulatus
are two of the most important vectors in Europe. Climate niche modelling has been used in many studies to attempt to explain their distribution and to predict changes under a range of climate change scenarios. The aim of this study was to assess the ability of different climate niche modelling approaches to explain the known distribution of
I. ricinus
and
D. reticulatus
in Europe.
Methods
A series of climate niche models, using different combinations of input data, were constructed and assessed. Species occurrence records obtained from systematic literature searches and Global Biodiversity Information Facility data were thinned to different degrees to remove sampling spatial bias. Four sources of climate data were used: bioclimatic variables, WorldClim, TerraClimate and MODIS satellite-derived data. Eight different model training extents were examined and three modelling frameworks were used: maximum entropy, generalised additive models and random forest models. The results were validated through internal cross-validation, comparison with an external independent dataset and expert opinion.
Results
The performance metrics and predictive ability of the different modelling approaches varied significantly within and between each species. Different combinations were better able to define the distribution of each of the two species. However, no single approach was considered fully able to capture the known distribution of the species. When considering the mean of the performance metrics of internal and external validation, 24 models for
I. ricinus
and 11 models for
D. reticulatus
of the 96 constructed were considered adequate according to the following criteria: area under the receiver-operating characteristic curve > 0.7; true skill statistic > 0.4; Miller’s calibration slope 0.25 above or below 1; Boyce index > 0.9; omission rate < 0.15.
Conclusions
This comprehensive analysis suggests that there is no single ‘best practice’ climate modelling approach to account for the distribution of these tick species. This has important implications for attempts to predict climate-mediated impacts on future tick distribution. It is suggested here that climate variables alone are not sufficient; habitat type, host availability and anthropogenic impacts, not included in current modelling approaches, could contribute to determining tick presence or absence at the local or regional scale.
Graphical abstract
Journal Article
Sex-Specific Linkages Between Taxonomic and Functional Profiles of Tick Gut Microbiomes
by
Cabezas-Cruz, Alejandro
,
Bard, Emilie
,
Obregón, Dasiel
in
Annotations
,
Antibiotics
,
Arthropods
2019
Ticks transmit the most diverse array of disease agents and harbor one of the most diverse microbial communities. Major progress has been made in the characterization of the taxonomic profiles of tick microbiota. However, the functional profiles of tick microbiome have been comparatively less studied. In this proof of concept we used state-of-the-art functional metagenomics analytical tools to explore previously reported datasets of bacteria found in male and female
, and
. Results showed that both taxonomic and functional profiles have differences between sexes of the same species. KEGG pathway analysis revealed that male and female of the same species had major differences in the abundance of genes involved in different metabolic pathways including vitamin B, amino acids, carbohydrates, nucleotides, and antibiotics among others. Partial reconstruction of metabolic pathways using KEGG enzymes suggests that tick microbiome form a complex metabolic network that may increase microbial community resilience and adaptability. Linkage analysis between taxonomic and functional profiles showed that among the KEGG enzymes with differential abundance in male and female ticks only 12% were present in single bacterial genera. The rest of these enzymes were found in more than two bacterial genera, and 27% of them were found in five up to ten bacterial genera. Comparison of bacterial genera contributing to the differences in the taxonomic and functional profiles of males and females revealed that while a small group of bacteria has a dual-role, most of the bacteria contribute only to functional or taxonomic differentiation between sexes. Results suggest that the different life styles of male and female ticks exert sex-specific evolutionary pressures that act independently on the phenomes (set of phenotypes) and genomes of bacteria in tick gut microbiota. We conclude that functional redundancy is a fundamental property of male and female tick microbiota and propose that functional metagenomics should be combined with taxonomic profiling of microbiota because both analyses are complementary.
Journal Article
The Impact of Climate Trends on a Tick Affecting Public Health: A Retrospective Modeling Approach for Hyalomma marginatum (Ixodidae)
2015
The impact of climate trends during the period 1901-2009 on the life cycle of Hyalomma marginatum in Europe was modeled to assess changes in the physiological processes of this threat to public health. Monthly records of temperature and water vapour at a resolution of 0.5° and equations describing the life cycle processes of the tick were used. The climate in the target region affected the rates of the life cycle processes of H. marginatum: development rates increased, mortality rates in molting stages decreased, and the survival rates of questing ticks decreased in wide territories of the Mediterranean basin. The modeling framework indicated the existence of critical areas in the Balkans, central Europe, and the western coast of France, where the physiological processes of the tick improved to extents that are consistent with the persistence of populations if introduced. A spatially explicit risk assessment was performed to detect candidate areas where active surveys should be performed to monitor changes in tick density or persistence after a hypothetical introduction. We detected areas where the critical abiotic (climate) and biotic (host density) factors overlap, including most of the Iberian peninsula, the Mediterranean coast of France, eastern Turkey, and portions of the western Black Sea region. Wild ungulate densities are unavailable for large regions of the territory, a factor that might affect the outcome of the study. The risk of successfully establishing H. marginatum populations at northern latitudes of its current colonization range seems to be still low, even if the climate has improved the performance of the tick in these areas.
Journal Article
Characterization by Quantitative Serum Proteomics of Immune-Related Prognostic Biomarkers for COVID-19 Symptomatology
by
Fuente García, José de Jesús de la
,
Jiménez-collados , N
,
Rodríguez-del-río , Fj
in
Arylesterase
,
Asymptomatic
,
biomarker
2021
The COVID-19 pandemic caused by SARS-CoV-2 challenges the understanding of factors affecting disease progression and severity. The identification of prognostic biomarkers and physiological processes associated with disease symptoms is relevant for the development of new diagnostic and therapeutic interventions to contribute to the control of this pandemic. To address this challenge, in this study, we used a quantitative proteomics together with multiple data analysis algorithms to characterize serum protein profiles in five cohorts from healthy to SARS-CoV-2-infected recovered (hospital discharge), nonsevere (hospitalized), and severe [at the intensive care unit (ICU)] cases with increasing systemic inflammation in comparison with healthy individuals sampled prior to the COVID-19 pandemic. The results showed significantly dysregulated proteins and associated biological processes and disorders associated to COVID-19. These results corroborated previous findings in COVID-19 studies and highlighted how the representation of dysregulated serum proteins and associated BPs increases with COVID-19 disease symptomatology from asymptomatic to severe cases. The analysis was then focused on novel disease processes and biomarkers that were correlated with disease symptomatology. To contribute to translational medicine, results corroborated the predictive value of selected immune-related biomarkers for disease recovery [Selenoprotein P (SELENOP) and Serum paraoxonase/arylesterase 1 (PON1)], severity [Carboxypeptidase B2 (CBP2)], and symptomatology [Pregnancy zone protein (PZP)] using protein-specific ELISA tests. Our results contributed to the characterization of SARS-CoV-2–host molecular interactions with potential contributions to the monitoring and control of this pandemic by using immune-related biomarkers associated with disease symptomatology.
Journal Article