Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
LanguageLanguage
-
SubjectSubject
-
Item TypeItem Type
-
DisciplineDiscipline
-
YearFrom:-To:
-
More FiltersMore FiltersIs Peer Reviewed
Done
Filters
Reset
59
result(s) for
"Euskirchen, Ghia"
Sort by:
Individual heritable differences result in unique cell lymphocyte receptor repertoires of naïve and antigen-experienced cells
by
Dekker, Cornelia L.
,
Levin, Mikhail
,
McGuire, Helen M.
in
13/31
,
631/208
,
631/250/1619/40/1774
2016
The adaptive immune system’s capability to protect the body requires a highly diverse lymphocyte antigen receptor repertoire. However, the influence of individual genetic and epigenetic differences on these repertoires is not typically measured. By leveraging the unique characteristics of B, CD4
+
T and CD8
+
T-lymphocyte subsets from monozygotic twins, we quantify the impact of heritable factors on both the V(D)J recombination process and on thymic selection. We show that the resulting biases in both V(D)J usage and N/P addition lengths, which are found in naïve and antigen experienced cells, contribute to significant variation in the CDR3 region. Moreover, we show that the relative usage of V and J gene segments is chromosomally biased, with ∼1.5 times as many rearrangements originating from a single chromosome. These data refine our understanding of the heritable mechanisms affecting the repertoire, and show that biases are evident on a chromosome-wide level.
The diversity of antigen receptor specificities is largely generated by random recombination of its segments. Here the authors show, by genetic comparison of monozygotic twin lymphocyte subsets, that individual genetic and epigenetic biases also contribute to the shape of the B and T cell repertoires.
Journal Article
Diverse Roles and Interactions of the SWI/SNF Chromatin Remodeling Complex Revealed Using Global Approaches
by
Gerstein, Mark B.
,
Davidov, Eugene
,
Euskirchen, Ghia M.
in
Biology
,
Cell Cycle - genetics
,
Chromatin
2011
A systems understanding of nuclear organization and events is critical for determining how cells divide, differentiate, and respond to stimuli and for identifying the causes of diseases. Chromatin remodeling complexes such as SWI/SNF have been implicated in a wide variety of cellular processes including gene expression, nuclear organization, centromere function, and chromosomal stability, and mutations in SWI/SNF components have been linked to several types of cancer. To better understand the biological processes in which chromatin remodeling proteins participate, we globally mapped binding regions for several components of the SWI/SNF complex throughout the human genome using ChIP-Seq. SWI/SNF components were found to lie near regulatory elements integral to transcription (e.g. 5' ends, RNA Polymerases II and III, and enhancers) as well as regions critical for chromosome organization (e.g. CTCF, lamins, and DNA replication origins). Interestingly we also find that certain configurations of SWI/SNF subunits are associated with transcripts that have higher levels of expression, whereas other configurations of SWI/SNF factors are associated with transcripts that have lower levels of expression. To further elucidate the association of SWI/SNF subunits with each other as well as with other nuclear proteins, we also analyzed SWI/SNF immunoprecipitated complexes by mass spectrometry. Individual SWI/SNF factors are associated with their own family members, as well as with cellular constituents such as nuclear matrix proteins, key transcription factors, and centromere components, implying a ubiquitous role in gene regulation and nuclear function. We find an overrepresentation of both SWI/SNF-associated regions and proteins in cell cycle and chromosome organization. Taken together the results from our ChIP and immunoprecipitation experiments suggest that SWI/SNF facilitates gene regulation and genome function more broadly and through a greater diversity of interactions than previously appreciated.
Journal Article
Sequencing Y Chromosomes Resolves Discrepancy in Time to Common Ancestor of Males Versus Females
by
Henn, Brenna M.
,
Quintana-Murci, Lluis
,
Sliwerska, Elzbieta
in
African Continental Ancestry Group - genetics
,
Calibration
,
Chromosomes
2013
The Y chromosome and the mitochondrial genome have been used to estimate when the common patrilineal and matrilineal ancestors of humans lived. We sequenced the genomes of 69 males from nine populations, including two in which we find basal branches of the Y-chromosome tree. We identify ancient phylogenetic structure within African haplogroups and resolve a long-standing ambiguity deep within the tree. Applying equivalent methodologies to the Y chromosome and the mitochondrial genome, we estimate the time to the most recent common ancestor (T MRCA ) of the Y chromosome to be 120 to 156 thousand years and the mitochondrial genome T MRCA to be 99 to 148 thousand years. Our findings suggest that, contrary to previous claims, male lineages do not coalesce significantly more recently than female lineages.
Journal Article
Performance comparison of exome DNA sequencing technologies
2011
Capturing and sequencing only the coding regions of the human genome leverages resources in the pursuit of rare disease-causing mutations. Clark
et al
. compare the performance of three leading exome-capture methods and their advantages over whole-genome sequencing.
Whole exome sequencing by high-throughput sequencing of target-enriched genomic DNA (exome-seq) has become common in basic and translational research as a means of interrogating the interpretable part of the human genome at relatively low cost. We present a comparison of three major commercial exome sequencing platforms from Agilent, Illumina and Nimblegen applied to the same human blood sample. Our results suggest that the Nimblegen platform, which is the only one to use high-density overlapping baits, covers fewer genomic regions than the other platforms but requires the least amount of sequencing to sensitively detect small variants. Agilent and Illumina are able to detect a greater total number of variants with additional sequencing. Illumina captures untranslated regions, which are not targeted by the Nimblegen and Agilent platforms. We also compare exome sequencing and whole genome sequencing (WGS) of the same sample, demonstrating that exome sequencing can detect additional small variants missed by WGS.
Journal Article
Molecular Mechanisms of Ethanol-Induced Pathogenesis Revealed by RNA-Sequencing
by
Euskirchen, Ghia
,
Snyder, Michael
,
Camarena, Laura
in
Acinetobacter baumannii - drug effects
,
Acinetobacter baumannii - genetics
,
Acinetobacter baumannii - pathogenicity
2010
Acinetobacter baumannii is a common pathogen whose recent resistance to drugs has emerged as a major health problem. Ethanol has been found to increase the virulence of A. baumannii in Dictyostelium discoideum and Caenorhabditis elegans models of infection. To better understand the causes of this effect, we examined the transcriptional profile of A. baumannii grown in the presence or absence of ethanol using RNA-Seq. Using the Illumina/Solexa platform, a total of 43,453,960 reads (35 nt) were obtained, of which 3,596,474 mapped uniquely to the genome. Our analysis revealed that ethanol induces the expression of 49 genes that belong to different functional categories. A strong induction was observed for genes encoding metabolic enzymes, indicating that ethanol is efficiently assimilated. In addition, we detected the induction of genes encoding stress proteins, including upsA, hsp90, groEL and lon as well as permeases, efflux pumps and a secreted phospholipase C. In stationary phase, ethanol strongly induced several genes involved with iron assimilation and a high-affinity phosphate transport system, indicating that A. baumannii makes a better use of the iron and phosphate resources in the medium when ethanol is used as a carbon source. To evaluate the role of phospholipase C (Plc1) in virulence, we generated and analyzed a deletion mutant for plc1. This strain exhibits a modest, but reproducible, reduction in the cytotoxic effect caused by A. baumannii on epithelial cells, suggesting that phospholipase C is important for virulence. Overall, our results indicate the power of applying RNA-Seq to identify key modulators of bacterial pathogenesis. We suggest that the effect of ethanol on the virulence of A. baumannii is multifactorial and includes a general stress response and other specific components such as phospholipase C.
Journal Article
Integrated systems analysis reveals a molecular network underlying autism spectrum disorders
by
Ma, Zhihai
,
Hallmayer, Joachim
,
Urban, Alexander
in
Animals
,
Autism
,
Autism Spectrum Disorder - genetics
2014
Autism is a complex disease whose etiology remains elusive. We integrated previously and newly generated data and developed a systems framework involving the interactome, gene expression and genome sequencing to identify a protein interaction module with members strongly enriched for autism candidate genes. Sequencing of 25 patients confirmed the involvement of this module in autism, which was subsequently validated using an independent cohort of over 500 patients. Expression of this module was dichotomized with a ubiquitously expressed subcomponent and another subcomponent preferentially expressed in the corpus callosum, which was significantly affected by our identified mutations in the network center. RNA‐sequencing of the corpus callosum from patients with autism exhibited extensive gene mis‐expression in this module, and our immunochemical analysis showed that the human corpus callosum is predominantly populated by oligodendrocyte cells. Analysis of functional genomic data further revealed a significant involvement of this module in the development of oligodendrocyte cells in mouse brain. Our analysis delineates a natural network involved in autism, helps uncover novel candidate genes for this disease and improves our understanding of its molecular pathology.
Synopsis
An integrative analysis of the interactome, gene expression and genome sequencing data identifies protein interaction modules implicated in autism spectrum disorders and reveals the corpus callosum as a potential tissue of origin in ASD.
Topological clustering of the human protein‐protein interaction network reveals two modules implicated in ASD, module #2 for chromatin remodeling proteins and transcription factors and #13 for proteins involved in brain function.
Module #13 has dichotomized expression with one sub‐component ubiquitously expressed in the brain, and the other enriched in the corpus callosum.
Module #13 is involved in oligodendrocyte development and axon myelination in the corpus callosum.
This study suggests interhemispheric disconnectivity in the brain as a potential cause underlying autism.
Graphical Abstract
An integrative analysis of the interactome, gene expression and genome sequencing data identifies protein interaction modules implicated in autism spectrum disorders and reveals the corpus callosum as a potential tissue of origin in ASD.
Journal Article
Efficient yeast ChIP-Seq using multiplex short-read DNA sequencing
by
Euskirchen, Ghia M
,
Rozowsky, Joel
,
Yellman, Christopher M
in
Animal Genetics and Genomics
,
Binding Sites
,
Binding sites (Biochemistry)
2009
Background
Short-read high-throughput DNA sequencing technologies provide new tools to answer biological questions. However, high cost and low throughput limit their widespread use, particularly in organisms with smaller genomes such as
S. cerevisiae
. Although ChIP-Seq in mammalian cell lines is replacing array-based ChIP-chip as the standard for transcription factor binding studies, ChIP-Seq in yeast is still underutilized compared to ChIP-chip. We developed a multiplex barcoding system that allows simultaneous sequencing and analysis of multiple samples using Illumina's platform. We applied this method to analyze the chromosomal distributions of three yeast DNA binding proteins (Ste12, Cse4 and RNA PolII) and a reference sample (input DNA) in a single experiment and demonstrate its utility for rapid and accurate results at reduced costs.
Results
We developed a barcoding ChIP-Seq method for the concurrent analysis of transcription factor binding sites in yeast. Our multiplex strategy generated high quality data that was indistinguishable from data obtained with non-barcoded libraries. None of the barcoded adapters induced differences relative to a non-barcoded adapter when applied to the same DNA sample. We used this method to map the binding sites for Cse4, Ste12 and Pol II throughout the yeast genome and we found 148 binding targets for Cse4, 823 targets for Ste12 and 2508 targets for PolII. Cse4 was strongly bound to all yeast centromeres as expected and the remaining non-centromeric targets correspond to highly expressed genes in rich media. The presence of Cse4 non-centromeric binding sites was not reported previously.
Conclusion
We designed a multiplex short-read DNA sequencing method to perform efficient ChIP-Seq in yeast and other small genome model organisms. This method produces accurate results with higher throughput and reduced cost. Given constant improvements in high-throughput sequencing technologies, increasing multiplexing will be possible to further decrease costs per sample and to accelerate the completion of large consortium projects such as modENCODE.
Journal Article
Genome-wide profiles of STAT1 DNA association using chromatin immunoprecipitation and massively parallel sequencing
by
Varhol, Richard
,
He, Ann
,
Marra, Marco
in
Binding sites
,
Bioinformatics
,
Biological Microscopy
2007
We developed a method, ChIP-sequencing (ChIP-seq), combining chromatin immunoprecipitation (ChIP) and massively parallel sequencing to identify mammalian DNA sequences bound by transcription factors
in vivo
. We used ChIP-seq to map STAT1 targets in interferon-γ (IFN-γ)–stimulated and unstimulated human HeLa S3 cells, and compared the method's performance to ChIP-PCR and to ChIP-chip for four chromosomes. By ChIP-seq, using 15.1 and 12.9 million uniquely mapped sequence reads, and an estimated false discovery rate of less than 0.001, we identified 41,582 and 11,004 putative STAT1-binding regions in stimulated and unstimulated cells, respectively. Of the 34 loci known to contain STAT1 interferon-responsive binding sites, ChIP-seq found 24 (71%). ChIP-seq targets were enriched in sequences similar to known STAT1 binding motifs. Comparisons with two ChIP-PCR data sets suggested that ChIP-seq sensitivity was between 70% and 92% and specificity was at least 95%.
Journal Article
Mapping Accessible Chromatin Regions Using Sono-Seq
2009
Disruptions in local chromatin structure often indicate features of biological interest such as regulatory régions. We find that sonication of cross-linked chromatin, when combined with a sizeselection step and massively parallel short-read sequencing, can be used as a method (Sono-Seq) to map locations of high chromatin accessibility in promoter regions. Sono-Seq sites frequently correspond to actively transcribed promoter regions, as evidenced by their co-association with RNA Polymerase II ChIP régions, transcription start sites, histone H3 lysine 4 trimethylation (H3K4me3) marks, and CpG islands; signals over other sites, such as those bound by the CTCF insulator, are also observed. The pattern of breakage by Sono-Seq overlaps with, but is distinct from, that observed for FAIRE and DNase I hypersensitive sites. Our results demonstrate that Sono-Seq can be a useful and simple method by which to map many local alterations in chromatin structure. Furthermore, our results provide insights into the mapping of binding sites by using ChIP-Seq experiments and the value of référence samples that should be used in such experiments.
Journal Article
Two methods for full-length RNA sequencing for low quantities of cells and single cells
by
Tanaka, Yoshiaki
,
Marjani, Sadie L.
,
Zhu, Haiying
in
Biological Sciences
,
Cells
,
Complementary DNA
2013
The ability to determine the gene expression pattern in low quantities of cells or single cells is important for resolving a variety of problems in many biological disciplines. A robust description of the expression signature of a single cell requires determination of the full-length sequence of the expressed mRNAs in the cell, yet existing methods have either 3' biased or variable transcript representation. Here, we report our protocols for the amplification and high-throughput sequencing of very small amounts of RNA for sequencing using procedures of either semirandom primed PCR or phi29 DNA polymerase-based DNA amplification, for the cDNA generated with oligo-dT and/or random oligonucleotide primers. Unlike existing methods, these protocols produce relatively uniformly distributed sequences covering the full length of almost all transcripts independent of their sizes, from 1,000 to 10 cells, and even with single cells. Both protocols produced satisfactory detection/coverage of the abundant mRNAs from a single K562 erythroleukemic cell or a single dorsal root ganglion neuron. The phi29-based method produces long products with less noise, uses an isothermal reaction, and is simple to practice. The semirandom primed PCR procedure is more sensitive and reproducible at low transcript levels or with low quantities of cells. These methods provide tools for mRNA sequencing or RNA sequencing when only low quantities of cells, a single cell, or even degraded RNA are available for profiling.
Journal Article