Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
454
result(s) for
"Evans, Todd"
Sort by:
Colonic organoids derived from human induced pluripotent stem cells for modeling colorectal cancer and drug testing
2017
A protocol based on chemical modulation of WNT activity is used to efficiently generate colonic organoids that recapitulate the molecular features of human colon tissue. Colonic organoids generated from induced pluripotent stem cells from patients with familial adenomatous polyposis provide an
in vitro
platform for disease modeling and preclinical drug testing.
With the goal of modeling human disease of the large intestine, we sought to develop an effective protocol for deriving colonic organoids (COs) from differentiated human embryonic stem cells (hESCs) or induced pluripotent stem cells (iPSCs). Extensive gene and immunohistochemical profiling confirmed that the derived COs represent colon rather than small intestine, containing stem cells, transit-amplifying cells, and the expected spectrum of differentiated cells, including goblet and endocrine cells. We applied this strategy to iPSCs derived from patients with familial adenomatous polyposis (FAP-iPSCs) harboring germline mutations in the WNT-signaling-pathway-regulator gene encoding APC, and we generated COs that exhibit enhanced WNT activity and increased epithelial cell proliferation, which we used as a platform for drug testing. Two potential compounds, XAV939 and rapamycin, decreased proliferation in FAP-COs, but also affected cell proliferation in wild-type COs, which thus limits their therapeutic application. By contrast, we found that geneticin, a ribosome-binding antibiotic with translational 'read-through' activity, efficiently targeted abnormal WNT activity and restored normal proliferation specifically in APC-mutant FAP-COs. These studies provide an efficient strategy for deriving human COs, which can be used in disease modeling and drug discovery for colorectal disease.
Journal Article
Boron Chemicals in Drug Discovery and Development: Synthesis and Medicinal Perspective
by
Saito, Mariko
,
Weiss, Louis M.
,
Das, Sasmita
in
aminoboronic acids
,
Amyotrophic lateral sclerosis
,
bezoxaboroles
2022
A standard goal of medicinal chemists has been to discover efficient and potent drug candidates with specific enzyme-inhibitor abilities. In this regard, boron-based bioactive compounds have provided amphiphilic properties to facilitate interaction with protein targets. Indeed, the spectrum of boron-based entities as drug candidates against many diseases has grown tremendously since the first clinically tested boron-based drug, Velcade. In this review, we collectively represent the current boron-containing drug candidates, boron-containing retinoids, benzoxaboroles, aminoboronic acid, carboranes, and BODIPY, for the treatment of different human diseases.In addition, we also describe the synthesis, key structure–activity relationship, and associated biological activities, such as antimicrobial, antituberculosis, antitumor, antiparasitic, antiprotozoal, anti-inflammatory, antifolate, antidepressant, antiallergic, anesthetic, and anti-Alzheimer’s agents, as well as proteasome and lipogenic inhibitors. This compilation could be very useful in the exploration of novel boron-derived compounds against different diseases, with promising efficacy and lesser side effects.
Journal Article
Identification of SARS-CoV-2 inhibitors using lung and colonic organoids
2021
There is an urgent need to create novel models using human disease-relevant cells to study severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) biology and to facilitate drug screening. Here, as SARS-CoV-2 primarily infects the respiratory tract, we developed a lung organoid model using human pluripotent stem cells (hPSC-LOs). The hPSC-LOs (particularly alveolar type-II-like cells) are permissive to SARS-CoV-2 infection, and showed robust induction of chemokines following SARS-CoV-2 infection, similar to what is seen in patients with COVID-19. Nearly 25% of these patients also have gastrointestinal manifestations, which are associated with worse COVID-19 outcomes
1
. We therefore also generated complementary hPSC-derived colonic organoids (hPSC-COs) to explore the response of colonic cells to SARS-CoV-2 infection. We found that multiple colonic cell types, especially enterocytes, express ACE2 and are permissive to SARS-CoV-2 infection. Using hPSC-LOs, we performed a high-throughput screen of drugs approved by the FDA (US Food and Drug Administration) and identified entry inhibitors of SARS-CoV-2, including imatinib, mycophenolic acid and quinacrine dihydrochloride. Treatment at physiologically relevant levels of these drugs significantly inhibited SARS-CoV-2 infection of both hPSC-LOs and hPSC-COs. Together, these data demonstrate that hPSC-LOs and hPSC-COs infected by SARS-CoV-2 can serve as disease models to study SARS-CoV-2 infection and provide a valuable resource for drug screening to identify candidate COVID-19 therapeutics.
The use of lung and colonic organoid systems to assess the susceptibility of lung and gut cells to SARS-CoV-2 and to screen FDA-approved drugs that have antiviral activity against SARS-CoV-2 is demonstrated.
Journal Article
Concise Review: Application of Chemically Modified mRNA in Cell Fate Conversion and Tissue Engineering
2019
Chemically modified RNA (cmRNA) has potential as a safe and efficient tool for nucleic acid‐based therapies and regenerative medicine. Modifications in the chemistry of mRNA can enhance stability, reduce immunogenicity, and thus facilitate mRNA‐based nucleic acid therapy, which eliminates risk of insertional mutagenesis. In addition to these valuable advantages, the mRNA‐based method showed significantly higher efficacy for reprogramming somatic cells to pluripotency compared with DNA‐ or protein‐based methods. These findings suggest cmRNA can provide a powerful and safe tool for cell programming and reprogramming. Delivery methods, particularly using lipid nanoparticles, provide strategies for cell and organ‐specific targeting. The present study comprehensively compares studies that have used cmRNAs for cell fate conversion and tissue engineering. The information should be useful for investigators looking to choose the most efficient and straightforward cmRNA‐based strategy and protocol for tissue engineering and regenerative medicine research. Stem Cells Translational Medicine 2019;8:833&843 Chemically modified RNA can be used for reprogramming (dedifferentiation) somatic cells to stem cells or directed differentiation of stem cells to a desired cell type. Somatic cells can also be directly reprogrammed (trans‐differentiation) whereas therapeutic mRNAs may facilitate tissue regeneration.
Journal Article
Cell type of origin influences the molecular and functional properties of mouse induced pluripotent stem cells
by
Figueroa, Maria Eugenia
,
Kulalert, Warakorn
,
Tan, Kah Yong
in
631/136/532/2442
,
631/532/1360
,
631/532/2064/2158
2010
Polo
et al
. show that early-passage induced pluripotent stem cells retain an epigenetic memory of their cell type of origin. These epigenetic differences affect the cells’ differentiation potential and might be exploited to generate particular cell types of interest.
Induced pluripotent stem cells (iPSCs) have been derived from various somatic cell populations through ectopic expression of defined factors. It remains unclear whether iPSCs generated from different cell types are molecularly and functionally similar. Here we show that iPSCs obtained from mouse fibroblasts, hematopoietic and myogenic cells exhibit distinct transcriptional and epigenetic patterns. Moreover, we demonstrate that cellular origin influences the
in vitro
differentiation potentials of iPSCs into embryoid bodies and different hematopoietic cell types. Notably, continuous passaging of iPSCs largely attenuates these differences. Our results suggest that early-passage iPSCs retain a transient epigenetic memory of their somatic cells of origin, which manifests as differential gene expression and altered differentiation capacity. These observations may influence ongoing attempts to use iPSCs for disease modeling and could also be exploited in potential therapeutic applications to enhance differentiation into desired cell lineages.
Journal Article
Translation initiation factor eIF3h targets specific transcripts to polysomes during embryogenesis
by
Choudhuri, Avik
,
Evans, Todd
,
Maitra, Umadas
in
Animals
,
Biological Sciences
,
Blotting, Western
2013
Eukaryotic translation initiation factor 3 (eIF3) plays a central role in translation initiation and consists of five core (conserved) subunits present in both budding yeast and higher eukaryotes. Higher eukaryotic eIF3 contains additional (noncore or nonconserved) subunits of poorly defined function, including sub-unit h (eIF3h), which in zebrafish is encoded by two distinct genes (eif3ha and eif3hb). Previously we showed that eif3ha encodes the predominant isoform during zebrafish embryogenesis and that depletion of this factor causes defects in the development of the brain and eyes. To investigate the molecular mechanism governing this regulation, we developed a genome-wide polysome-profiling strategy using stage-matched WT and eif3ha morphant zebrafish embryos. This strategy identified a large set of predominantly neural-associated translationally regulated mRNAs. A striking finding was a cohort of lens-associated crystallin isoform mRNAs lost from the eif3ha morphant polysomes, revealing a mechanism by which lens development is translationally controlled. We show that both UTR sequences of a targeted crystallin transcript are necessary but not sufficient for translational regulation by eif3ha . Therefore, our study reveals the role of a noncore eIF3 subunit in modulating a specific developmental program by regulating translation of defined transcripts and highlights the potential of the zebrafish system to identify translational regulatory mechanisms controlling vertebrate development.
Journal Article
Primary contribution to zebrafish heart regeneration by gata4+ cardiomyocytes
by
Egnaczyk, Gregory F.
,
MacRae, Calum A.
,
Kikuchi, Kazu
in
631/136/334/1874/763
,
631/443/592/2725
,
631/45/612/822
2010
Cardiac regeneration
Zebrafish are able to efficiently regenerate lost cardiac muscle, and is used as a model to understand why natural heart regeneration is blocked in mammals. Two groups reporting in the issue of
Nature
used genetic fate-mapping approaches to identify which population of cardiomyocytes contribute prominently to cardiac muscle regeneration after an injury approximating myocardial infarction. They show that cardiac muscle regenerates through activation and expansion of existing cardiomyocytes, and does not involve activation of a stem cell population.
Zebrafish are able to replace lost heart muscle efficiently, and are used as a model to understand why natural heart regeneration — after a heart attack, for instance — is blocked in mammals. Here, and in an accompanying paper, genetic fate-mapping approaches reveal which cell population contributes prominently to cardiac muscle regeneration after an injury approximating myocardial infarction. The results show that cardiac muscle regenerates through activation and expansion of existing cardiomyocytes, without involving a stem-cell population.
Recent studies indicate that mammals, including humans, maintain some capacity to renew cardiomyocytes throughout postnatal life
1
,
2
. Yet, there is little or no significant cardiac muscle regeneration after an injury such as acute myocardial infarction
3
. By contrast, zebrafish efficiently regenerate lost cardiac muscle, providing a model for understanding how natural heart regeneration may be blocked or enhanced
4
,
5
. In the absence of lineage-tracing technology applicable to adult zebrafish, the cellular origins of newly regenerated cardiac muscle have remained unclear. Using new genetic fate-mapping approaches, here we identify a population of cardiomyocytes that become activated after resection of the ventricular apex and contribute prominently to cardiac muscle regeneration. Through the use of a transgenic reporter strain, we found that cardiomyocytes throughout the subepicardial ventricular layer trigger expression of the embryonic cardiogenesis gene
gata4
within a week of trauma, before expression localizes to proliferating cardiomyocytes surrounding and within the injury site. Cre-recombinase-based lineage-tracing of cells expressing
gata4
before evident regeneration, or of cells expressing the contractile gene
cmlc2
before injury, each labelled most cardiac muscle in the ensuing regenerate. By optical voltage mapping of surface myocardium in whole ventricles, we found that electrical conduction is re-established between existing and regenerated cardiomyocytes between 2 and 4 weeks post-injury. After injury and prolonged fibroblast growth factor receptor inhibition to arrest cardiac regeneration and enable scar formation, experimental release of the signalling block led to
gata4
expression and morphological improvement of the injured ventricular wall without loss of scar tissue. Our results indicate that electrically coupled cardiac muscle regenerates after resection injury, primarily through activation and expansion of cardiomyocyte populations. These findings have implications for promoting regeneration of the injured human heart.
Journal Article
ROCKII inhibition promotes the maturation of human pancreatic beta-like cells
by
Amin, Sadaf
,
Ghazizadeh, Zaniar
,
Rao, Sahana
in
1-(5-Isoquinolinesulfonyl)-2-Methylpiperazine - analogs & derivatives
,
1-(5-Isoquinolinesulfonyl)-2-Methylpiperazine - pharmacology
,
631/532/1360
2017
Diabetes is linked to loss of pancreatic beta-cells. Pluripotent stem cells offer a valuable source of human beta-cells for basic studies of their biology and translational applications. However, the signalling pathways that regulate beta-cell development and functional maturation are not fully understood. Here we report a high content chemical screen, revealing that H1152, a ROCK inhibitor, promotes the robust generation of insulin-expressing cells from multiple hPSC lines. The insulin expressing cells obtained after H1152 treatment show increased expression of mature beta cell markers and improved glucose stimulated insulin secretion. Moreover, the H1152-treated beta-like cells show enhanced glucose stimulated insulin secretion and increased capacity to maintain glucose homeostasis after transplantation. Conditional gene knockdown reveals that inhibition of ROCKII promotes the generation and maturation of glucose-responding cells. This study provides a strategy to promote human beta-cell maturation and identifies an unexpected role for the ROCKII pathway in the development and maturation of beta-like cells.
Our incomplete understanding of how pancreatic beta cells form limits the generation of beta-like cells from human pluripotent stem cells (hPSC). Here, the authors identify a ROCKII inhibitor H1152 as increasing insulin secreting cells from hPSCs and improving beta-cell maturation on transplantation in vivo.
Journal Article
Edge stability and transport control with resonant magnetic perturbations in collisionless tokamak plasmas
by
West, William P.
,
Joseph, Ilon
,
Osborne, Thomas H.
in
Atomic
,
Classical and Continuum Physics
,
Complex Systems
2006
A critical issue for fusion-plasma research is the erosion of the first wall of the experimental device due to impulsive heating from repetitive edge magneto-hydrodynamic instabilities known as 'edge-localized modes' (ELMs). Here, we show that the addition of small resonant magnetic field perturbations completely eliminates ELMs while maintaining a steady-state high-confinement (H-mode) plasma. These perturbations induce a chaotic behaviour in the magnetic field lines, which reduces the edge pressure gradient below the ELM instability threshold. The pressure gradient reduction results from a reduction in the particle content of the plasma, rather than an increase in the electron thermal transport. This is inconsistent with the predictions of stochastic electron heat transport theory. These results provide a first experimental test of stochastic transport theory in a highly rotating, hot, collisionless plasma and demonstrate a promising solution to the critical issue of controlling edge instabilities in fusion-plasma devices.
Journal Article
Development of a New Methodology for Dearomative Borylation of Coumarins and Chromenes and Its Applications to Synthesize Boron-Containing Retinoids
2023
Dearomative borylation of coumarins and chromenes via conjugate addition represents a relatively unexplored and challenging task. To address this issue, herein, we report a new and general copper (I) catalyzed dearomative borylation process to synthesize boron-containing oxacycles. In this report, the borylation of coumarins, chromones, and chromenes comprising functional groups, such as esters, nitriles, carbonyls, and amides, has been achieved. In addition, the method generates different classes of potential boron-based retinoids, including the ones with oxadiazole and anthocyanin motifs. The borylated oxacycles can serve as suitable intermediates to generate a library of compounds.
Journal Article