Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
9 result(s) for "Evsyukov, Valentin"
Sort by:
Alpha-synuclein fragments trigger distinct aggregation pathways
Aggregation of alpha-synuclein (αSyn) is a crucial event underlying the pathophysiology of synucleinopathies. The existence of various intracellular and extracellular αSyn species, including cleaved αSyn, complicates the quest for an appropriate therapeutic target. Hence, to develop efficient disease-modifying strategies, it is fundamental to achieve a deeper understanding of the relevant spreading and toxic αSyn species. Here, we describe comparative and proof-of-principle approaches to determine the involvement of αSyn fragments in intercellular spreading. We demonstrate that two different αSyn fragments (1–95 and 61–140) fulfill the criteria of spreading species. They efficiently instigate formation of proteinase-K-resistant aggregates from cell-endogenous full-length αSyn, and drive it into different aggregation pathways. The resulting aggregates induce cellular toxicity. Strikingly, these aggregates are only detectable by specific antibodies. Our results suggest that αSyn fragments might be relevant not only for spreading, but also for aggregation-fate determination and differential strain formation.
Non-invasive and high-throughput interrogation of exon-specific isoform expression
Expression of exon-specific isoforms from alternatively spliced mRNA is a fundamental mechanism that substantially expands the proteome of a cell. However, conventional methods to assess alternative splicing are either consumptive and work-intensive or do not quantify isoform expression longitudinally at the protein level. Here, we therefore developed an exon-specific isoform expression reporter system (EXSISERS), which non-invasively reports the translation of exon-containing isoforms of endogenous genes by scarlessly excising reporter proteins from the nascent polypeptide chain through highly efficient, intein-mediated protein splicing. We applied EXSISERS to quantify the inclusion of the disease-associated exon 10 in microtubule-associated protein tau ( MAPT ) in patient-derived induced pluripotent stem cells and screened Cas13-based RNA-targeting effectors for isoform specificity. We also coupled cell survival to the inclusion of exon 18b of FOXP1 , which is involved in maintaining pluripotency of embryonic stem cells, and confirmed that MBNL1 is a dominant factor for exon 18b exclusion. EXSISERS enables non-disruptive and multimodal monitoring of exon-specific isoform expression with high sensitivity and cellular resolution, and empowers high-throughput screening of exon-specific therapeutic interventions. Truong et al. developed a cell-based reporter system, EXSISERS, that enables non-invasive quantification of the protein expression levels of exon-specific isoforms via intein-mediated protein splicing.
Genetic mutations linked to Parkinson's disease differentially control nucleolar activity in pre-symptomatic mouse models
Genetic mutations underlying neurodegenerative disorders impair ribosomal DNA (rDNA) transcription suggesting nucleolar dysfunction as a novel pathomechanism in polyglutamine diseases and in certain forms of amyotrophic lateral sclerosis/frontotemporal dementia. Here, we investigated nucleolar activity in pre-symptomatic digenic models of Parkinson's disease (PD) modeling the multifactorial etiology of this disease. To this end, we analyzed a novel mouse model mildly overexpressing the mutant human-A53T-alpha-synuclein (hA53T-SNCA/PARK1) in a PTEN-induced kinase 1 (PINK1/PARK6) knock-out background and mutant mice lacking both DJ-1/PARK7 and PINK1/PARK6. We showed that overexpressed human-A53T-alpha-synuclein localizes in the nucleolus. Moreover, these mutants show a progressive reduction of rDNA transcription linked to a reduced mouse lifespan. On the contrary in DJ-1/PINK1 double knock-out (DKO) mice rDNA transcription is preserved. mRNA levels of the nucleolar transcription initiation factor-IA (TIF-IA) decrease in substantia nigra of PD patients. Because loss of TIF-IA, as a tool to mimic nucleolar stress, increases oxidative stress and because DJ-1 and PINK1 mutations result in higher vulnerability to oxidative stress, we further explored the synergism between these PD-associated genes and impaired nucleolar function. By the conditional ablation of TIF-IA gene, we blocked ribosomal RNA (rRNA) synthesis in adult dopaminergic neurons in a DJ-1/PINK1 DKO background. However, the early phenotype of these triple knock-out mice was similar to those mice exclusively lacking TIF-IA. These data sustain a model in which DJ-1/PINK1 loss does not impair nucleolar activity in a pre-symptomatic stage. This is the first study that analyzes nucleolar function in digenic PD models. We can conclude that at least in these models the nucleolus is not as severely disrupted as previously shown in DA neurons from PD patients and neurotoxin-based PD mouse models. The results also show that early increase in rDNA transcription and nucleolar integrity may represent specific homeostatic responses in these digenic pre-symptomatic PD models.
Comprehensive miRNome-Wide Profiling in a Neuronal Cell Model of Synucleinopathy Implies Involvement of Cell Cycle Genes
Growing evidence suggests that epigenetic mechanisms like microRNA-mediated transcriptional regulation contribute to the pathogenesis of parkinsonism. In order to study the influence of microRNAs (miRNAs), we analyzed the miRNome 2 days prior to major cell death in α-synuclein-overexpressing Lund human mesencephalic neurons, a well-established cell model of Parkinson’s disease (PD), by next-generation sequencing. The expression levels of 23 miRNAs were significantly altered in α-synuclein-overexpressing cells, 11 were down- and 12 upregulated ( P < 0.01; non-adjusted). The in silico analysis of known target genes of these miRNAs was complemented by the inclusion of a transcriptome dataset (BeadChip) of the same cellular system, revealing the G0/G1 cell cycle transition to be markedly enriched. Out of 124 KEGG-annotated cell cycle genes, 15 were present in the miRNA target gene dataset and six G0/G1 cell cycle genes were found to be significantly altered upon α-synuclein overexpression, with five genes up- ( CCND1 , CCND2 , and CDK4 at P < 0.01; E2F3 , MYC at P < 0.05) and one gene downregulated ( CDKN1C at P < 0.001). Additionally, several of these altered genes are targeted by miRNAs hsa-miR-34a-5p and hsa-miR-34c-5p, which also modulate α-synuclein expression levels. Functional intervention by siRNA-mediated knockdown of the cell cycle gene cyclin D1 ( CCND1 ) confirmed that silencing of cell cycle initiation is able to substantially reduce α-synuclein-mediated cytotoxicity. The present findings suggest that α-synuclein accumulation induces microRNA-mediated aberrant cell cycle activation in post-mitotic dopaminergic neurons. Thus, the mitotic cell cycle pathway at the level of miRNAs might offer interesting novel therapeutic targets for PD.
Inhibition of TGF-beta signaling protects from alpha-synuclein induced toxicity
Parkinson's disease (PD) is histopathologically defined by the presence of Lewy bodies, which are intracellular proteinaceous inclusions that contain mainly aggregated alpha-synuclein (aSyn). It is believed that oligomeric intermediates between monomeric aSyn and large aggregates are neurotoxic, which would lead to the demise of dopaminergic neurons. Therefore, novel therapies preventing aSyn-induced cell death need to be developed. Therefore, we performed a genome-wide siRNA screening in an aSyn-induced dopaminergic cell death model and found the knockdown of three transforming growth factor-beta (TGFb) pathway-related genes to be protective. Hence, we hypothesized that a reduction in TGFb signaling would protect dopaminergic neurons from aSyn-induced toxicity. Thus, we validated the results of the genome-wide knockdown screening with the use of two different types of siRNAs. We confirmed that the knockdown of Activin receptor-like kinase 5 (ALK5) and Mothers against decapentaplegic homolog 2 (SMAD2), two genes of the TGFb pathway, protected dopaminergic neurons from aSyn-induced toxicity. An increase in TGFb signaling by treatment with TGFb ligands further exacerbated aSyn-induced toxicity, whereas this effect was mitigated by knockdown of ALK5, SMAD2, or Dynein light chain roadblock type-1 (DYNLRB1). Moreover, TGFb ligand treatment induced an up-regulation of SNCA mRNA expression in aSyn-overexpressing cells. Interestingly, consistent with the literature, we identified an up-regulation of the genes of the TGFb pathway in aSyn-overexpressing cells. Altogether, we identified a potential protective role by interference with the TGFb pathway against aSyn-induced toxicity. These findings provide a rationale for the development of novel strategies against PD.
Binding Stability of Antibody—α-Synuclein Complexes Predicts the Protective Efficacy of Anti-α-synuclein Antibodies
Spreading of alpha-synuclein (αSyn) may play an important role in Parkinson’s disease and related synucleinopathies. Passive immunization with anti-αSyn antibodies is a promising method to slow down the spreading process and thereby the progression of synucleinopathies. Currently, it remains elusive which specific characteristics are essential to render therapeutic antibodies efficacious. Here, we established a neuronal co-culture model, in which αSyn species are being released from αSyn-overexpressing cells and induce toxicity in a priori healthy GFP-expressing cells. In this model, we investigated the protective efficacy of three anti-αSyn antibodies. Only two of these antibodies, one C-terminal and one N-terminal, protected from αSyn-induced toxicity by inhibiting the uptake of spreading-competent αSyn from the cell culture medium. Neither the binding epitope nor the affinity of the antibodies towards recombinant αSyn could explain differences in biological efficacy. However, both protective antibodies formed more stable antibody-αSyn complexes than the non-protective antibody. These findings indicate that the stability of antibody-αSyn complexes may be more important to confer protection than the binding epitope or affinity to recombinant αSyn.
Analytical “bake-off” of whole genome sequencing quality for the Genome Russia project using a small cohort for autoimmune hepatitis
A comparative analysis of whole genome sequencing (WGS) and genotype calling was initiated for ten human genome samples sequenced by St. Petersburg State University Peterhof Sequencing Center and by three commercial sequencing centers outside of Russia. The sequence quality, efficiency of DNA variant and genotype calling were compared with each other and with DNA microarrays for each of ten study subjects. We assessed calling of SNPs, indels, copy number variation, and the speed of WGS throughput promised. Twenty separate QC analyses showed high similarities among the sequence quality and called genotypes. The ten genomes tested by the centers included eight American patients afflicted with autoimmune hepatitis (AIH), plus one case's unaffected parents, in a prelude to discovering genetic influences in this rare disease of unknown etiology. The detailed internal replication and parallel analyses allowed the observation of two of eight AIH cases carrying a rare allele genotype for a previously described AIH-associated gene (FTCD), plus multiple occurrences of known HLA-DRB1 alleles associated with AIH (HLA-DRB1-03:01:01, 13:01:01 and 7:01:01). We also list putative SNVs in other genes as suggestive in AIH influence.