Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
2
result(s) for
"Eymard, Carla"
Sort by:
Synthesis of 4′-Thionucleoside Analogues Bearing a C2′ Stereogenic All-Carbon Quaternary Center
by
Dostie, Starr
,
Manchoju, Amarender
,
Prévost, Michel
in
acyclic approach
,
Carbon
,
Cardiac Glycosides
2024
The design of novel 4′-thionucleoside analogues bearing a C2′ stereogenic all-carbon quaternary center is described. The synthesis involves a highly diastereoselective Mukaiyama aldol reaction, and a diastereoselective radical-based vinyl group transfer to generate the all-carbon stereogenic C2′ center, along with different approaches to control the selectivity of the N-glycosidic bond. Intramolecular SN2-like cyclization of a mixture of acyclic thioaminals provided analogues with a pyrimidine nucleobase. A kinetic bias favoring cyclization of the 1′,2′-anti thioaminal furnished the desired β-D-4′-thionucleoside analogue in a 7:1 ratio. DFT calculations suggest that this kinetic resolution originates from additional steric clash in the SN2-like transition state for 1′,4′-trans isomers, causing a significant decrease in their reaction rate relative to 1′,4′-cis counterparts. N-glycosylation of cyclic glycosyl donors with a purine nucleobase enabled the formation of novel 2-chloroadenine 4′-thionucleoside analogues. These proprietary molecules and other derivatives are currently being evaluated both in vitro and in vivo to establish their biological profiles.
Journal Article
Nucleotide Analogues Bearing a C2′ or C3′-Stereogenic All-Carbon Quaternary Center as SARS-CoV-2 RdRp Inhibitors
by
Manchoju, Amarender
,
Prévost, Michel
,
Oo, Adrian
in
Alcohol
,
Antiviral Agents - chemical synthesis
,
Antiviral Agents - chemistry
2022
The design of novel nucleoside triphosphate (NTP) analogues bearing an all-carbon quaternary center at C2′ or C3′ is described. The construction of this all-carbon stereogenic center involves the use of an intramoleculer photoredox-catalyzed reaction. The nucleoside analogues (NA) hydroxyl functional group at C2′ was generated by diastereoselective epoxidation. In addition, highly enantioselective and diastereoselective Mukaiyama aldol reactions, diastereoselective N-glycosylations and regioselective triphosphorylation reactions were employed to synthesize the novel NTPs. Two of these compounds are inhibitors of the RNA-dependent RNA polymerase (RdRp) of SARS-CoV-2, the causal virus of COVID-19.
Journal Article