Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
12
result(s) for
"Eynaud, Yoan"
Sort by:
The influence of habitat and adults on the spatial distribution of juvenile corals
2019
Population distributions are affected by a variety of spatial processes, including dispersal, intraspecific dynamics and habitat selection. Within reef‐building coral communities, these processes are especially important during the earliest life stages when reproduction provides mobility among sessile organisms and populations experience the greatest mortality bottlenecks both before and immediately after settlement. Here, we used large‐area imaging to create photomosaics that allowed us to identify and map the location of 4681 juvenile (1–5 cm diameter) and 25 902 adult (>5 cm diameter) coral colonies from eight 100‐m2 plots across the forereef of Palmyra Atoll. Using metrics of density, percent cover and the relative location of each colony within each plot, we examined abundance and spatial relationships between juvenile and adult coral taxa. Within coral taxa, juvenile density was generally positively related to the numerical density and percent cover of adults. Nearest neighbor analyses showed aggregation of juveniles near adults of the same taxon for two of the focal taxa (Pocillopora and Fungiids), while all other taxa showed random spatial patterning relative to adults. Three taxa had clustered distributions of juveniles overall. Additionally, we found that on a colony level, juveniles for five of nine focal taxa (accounting for >98% of all identified juveniles) associated with a specific habitat type, with four of those five taxa favoring unconsolidated (e.g. rubble) over consolidated substrata. The general lack of clustering in juvenile corals contrasts with consistent clustering patterns seen in adult corals, suggesting that adult spatial patterns are largely driven by processes occurring after maturity such as partial colony mortality, including fission and fragmentation. The association of many taxa with unconsolidated habitat also suggests that corals may play an important role in colonizing natural rubble patches that could contribute to reef stabilization over time.
Journal Article
Local human impacts decouple natural biophysical relationships on Pacific coral reefs
by
Gove, Jamison M.
,
Williams, Gareth J.
,
Sandin, Stuart A.
in
anthropogenic activities
,
chlorophyll
,
coral reefs
2015
Human impacts can homogenize and simplify ecosystems, favoring communities that are no longer naturally coupled with (or reflective of) the background environmental regimes in which they are found. Such a process of biophysical decoupling has been explored little in the marine environment due to a lack of replication across the intact-to-degraded ecosystem spectrum. Coral reefs lacking local human impacts provide critical baseline scenarios in which to explore natural biophysical relationships, and provide a template against which to test for their human-induced decoupling. Using 39 Pacific islands, 24 unpopulated (relatively free from local human impacts) and 15 populated (with local human impacts present), spanning 45° of latitude and 65° of longitude, we ask, what are ‘natural’ biophysical relationships on coral reefs and do we see evidence for their human-induced decoupling? Estimates of the percent cover of benthic groups were related to multiple physical environmental drivers (sea surface temperature, irradiance, chlorophyll-a, and wave energy) using mixed-effects models and island mean condition as the unit of replication. Models across unpopulated islands had high explanatory power, identifying key physical environmental drivers of variations in benthic cover in the absence of local human impacts. These same models performed poorly and lost explanatory power when fitted anew to populated (human impacted) islands; biophysical decoupling was clearly evident. Furthermore, key biophysical relationships at populated islands (i.e. those relationships driving benthic variation across space in conjunction with chronic human impact) bore little resemblance to the baseline scenarios identified from unpopulated islands. Our results highlight the ability of local human impacts to decouple biophysical relationships in the marine environment and fundamentally restructure the natural rules of nature.
Journal Article
Quantifying life history demographics of the scleractinian coral genus Pocillopora at Palmyra Atoll
2020
Characterizations of colony-specific fate are necessary to predict trajectories of coral population change accurately, and a research challenge exists to collect more robust data describing coral demographic rates and the factors that influence them. Colonial, reef-building corals present challenges to the study of demography, given that the size of individual colonies can be decoupled from age, and rates of colony growth and shrinkage can be effectively indeterminate. In this study, we use a large-area imaging approach to quantify demographic rates of the coral genus Pocillopora and test for the influence of colony-specific predictors on net change in live tissue area (labeled growth and shrinkage) and whole-colony mortality. We found that a colony’s fate was linked to its initial size, with larger colonies experiencing far lower probability of mortality, but higher probability of shrinkage, than smaller colonies. Historical effects also significantly affected colony fate, as colonies with a recent history of tissue loss experienced a higher probability of subsequent shrinkage and mortality the following year. Finally, significant variability in growth and mortality rates was linked to intra-island site differences, which we hypothesize may be driven by differences in food availability and heterotrophic feeding rates. Our work highlights the importance of colony-specific characteristics, including size and historical effects, in influencing demographic fates of corals.
Journal Article
Investigating functional redundancy versus complementarity in Hawaiian herbivorous coral reef fishes
by
Clements, Samantha M.
,
Sparks, Russell T.
,
Williams, Ivor D.
in
Algae
,
Analysis
,
Animal behavior
2016
Patterns of species resource use provide insight into the functional roles of species and thus their ecological significance within a community. The functional role of herbivorous fishes on coral reefs has been defined through a variety of methods, but from a grazing perspective, less is known about the species-specific preferences of herbivores on different groups of reef algae and the extent of dietary overlap across an herbivore community. Here, we quantified patterns of redundancy and complementarity in a highly diverse community of herbivores at a reef on Maui, Hawaii, USA. First, we tracked fish foraging behavior in situ to record bite rate and type of substrate bitten. Second, we examined gut contents of select herbivorous fishes to determine consumption at a finer scale. Finally, we placed foraging behavior in the context of resource availability to determine how fish selected substrate type. All species predominantly (73–100 %) foraged on turf algae, though there were differences among the types of macroalgae and other substrates bitten. Increased resolution via gut content analysis showed the composition of turf algae consumed by fishes differed across herbivore species. Consideration of foraging behavior by substrate availability revealed 50 % of herbivores selected for turf as opposed to other substrate types, but overall, there were variable foraging portfolios across all species. Through these three methods of investigation, we found higher complementarity among herbivorous fishes than would be revealed using a single metric. These results suggest differences across species in the herbivore “rain of bites” that graze and shape benthic community composition.
Journal Article
Comparative metabolic ecology of tropical herbivorous echinoids on a coral reef
2018
The metabolic rate of consumers is a key driver of ecosystem dynamics. On coral reefs, herbivorous echinoids consume fleshy algae, facilitating the growth of reef-building calcified organisms; however, little is known about differences among species in their metabolic and functional ecology. Here, we used log-linear (log-log) regression models to examine the allometric scaling of mass and routine metabolic rate for five common herbivorous echinoids on a Hawaiian coral reef: Echinothrix calamaris, E. diadema, Echinometra matthaei, Heterocentrotus mammillatus, and Tripneustes gratilla. Scaling relationships were then contrasted with empirical observations of echinoid ecology and general metabolic theory to broaden our understanding of diversity in the metabolic and functional ecology of tropical herbivorous echinoids.
Test diameter and species explained 98% of the variation in mass, and mass and species explained 92.4% and 87.5% of the variation in individual (I) and mass-specific (B) metabolic rates, respectively. Scaling exponents did not differ for mass or metabolism; however, normalizing constants differed significantly among species. Mass varied as the cube of test diameter (b = 2.9), with HM exhibiting a significantly higher normalizing constant than other species, likely due to its heavily-calcified spines and skeleton. Individual metabolic rate varied approximately as the 2/5 power of mass (γ = 0.44); significantly smaller than the 3/4 universal scaling coefficient, but inclusive of 2/3 scaling. E. calamaris and H. mammillatus exhibited the lowest normalizing constants, corresponding with their slow-moving, cryptic, rock-boring life-history. In contrast, E. calamaris, E. diadema, and T. gratilla, exhibited higher metabolic rates, likely reflecting their higher levels of activity and ability to freely browse for preferred algae due to chemical anti-predator defenses. Thus, differences in metabolic scaling appeared to correspond with differences in phylogeny, behavior, and ecological function. Such comparative metabolic assessments are central to informing theory, ecological models, and the effective management of ecosystems.
Journal Article
Future sea-level rise drives rocky intertidal habitat loss and benthic community change
by
Edwards, Clinton B.
,
Eynaud, Yoan
,
Kaplanis, Nikolas J.
in
Animal behavior
,
Climate Change Biology
,
Coastal ecosystems
2020
The impacts of sea-level rise (SLR) are likely to be the greatest for ecosystems that exist at the land-sea interface, where small changes in sea-level could result in drastic changes in habitat availability. Rocky intertidal ecosystems possess a number of characteristics which make them highly vulnerable to changes in sea-level, yet our understanding of potential community-scale responses to future SLR scenarios is limited. Combining remote-sensing with in-situ large-area imaging, we quantified habitat extent and characterized the biological community at two rocky intertidal study locations in California, USA. We then used a model-based approach to estimate how a range of SLR scenarios would affect total habitat area, areal extent of dominant benthic space occupiers, and numerical abundance of invertebrates. Our results suggest that SLR will reduce total available rocky intertidal habitat area at our study locations, leading to an overall decrease in areal extent of dominant benthic space occupiers, and a reduction in invertebrate abundances. As large-scale environmental changes, such as SLR, accelerate in the next century, more extensive spatially explicit monitoring at ecologically relevant scales will be needed to visualize and quantify their impacts to biological systems.
Journal Article
Large-area imaging reveals biologically driven non-random spatial patterns of corals at a remote reef
by
Pedersen, Nicole E.
,
Edwards, Clinton B.
,
Williams, Gareth J.
in
Atolls
,
Biology
,
Biomedical and Life Sciences
2017
For sessile organisms such as reef-building corals, differences in the degree of dispersion of individuals across a landscape may result from important differences in life-history strategies or may reflect patterns of habitat availability. Descriptions of spatial patterns can thus be useful not only for the identification of key biological and physical mechanisms structuring an ecosystem, but also by providing the data necessary to generate and test ecological theory. Here, we used an in situ imaging technique to create large-area photomosaics of 16 plots at Palmyra Atoll, central Pacific, each covering 100 m
2
of benthic habitat. We mapped the location of 44,008 coral colonies and identified each to the lowest taxonomic level possible. Using metrics of spatial dispersion, we tested for departures from spatial randomness. We also used targeted model fitting to explore candidate processes leading to differences in spatial patterns among taxa. Most taxa were clustered and the degree of clustering varied by taxon. A small number of taxa did not significantly depart from randomness and none revealed evidence of spatial uniformity. Importantly, taxa that readily fragment or tolerate stress through partial mortality were more clustered. With little exception, clustering patterns were consistent with models of fragmentation and dispersal limitation. In some taxa, dispersion was linearly related to abundance, suggesting density dependence of spatial patterning. The spatial patterns of stony corals are non-random and reflect fundamental life-history characteristics of the taxa, suggesting that the reef landscape may, in many cases, have important elements of spatial predictability.
Journal Article
Foraging consistency of coral reef fishes across environmental gradients in the central Pacific
by
Hamilton, Scott L.
,
Williams, Gareth J.
,
Sandin, Stuart A.
in
Allochthonous deposits
,
Benthos
,
Biomedical and Life Sciences
2019
We take advantage of a natural gradient of human exploitation and oceanic primary production across five central Pacific coral reefs to examine foraging patterns in common coral reef fishes. Using stomach content and stable isotope (δ¹⁵N and δ¹³C) analyses, we examined consistency across islands in estimated foraging patterns. Surprisingly, species within the piscivore–invertivore group exhibited the clearest pattern of foraging consistency across all five islands despite there being a considerable difference in mean body mass (14 g–1.4 kg) and prey size (0.03–3.8 g). In contrast, the diets and isotopic values of the grazer–detritivores varied considerably and exhibited no consistent patterns across islands. When examining foraging patterns across environmental contexts, we found that δ¹⁵N values of species of piscivore–invertivore and planktivore closely tracked gradients in oceanic primary production; again, no comparable patterns existed for the grazer–detritivores. The inter-island consistency in foraging patterns within the species of piscivore–invertivore and planktivore and the lack of consistency among species of grazer–detritivores suggests a linkage to different sources of primary production among reef fish functional groups. Our findings suggest that piscivore–invertivores and planktivores are likely linked to well-mixed and isotopically constrained allochthonous oceanic primary production, while grazer–detritivores are likely linked to sources of benthic primary production and autochthonous recycling. Further, our findings suggest that species of piscivore–invertivore, independent of body size, converge toward consuming low trophic level prey, with a hypothesized result of reducing the number of steps between trophic levels and increasing the trophic efficiency at a community level.
Journal Article
Benthic assemblages are more predictable than fish assemblages at an island scale
by
Kramp, Heather
,
Roach, Ty N. F
,
Hamilton, Scott L
in
Algae
,
Anthropogenic factors
,
Autocorrelation
2022
Decades of research have revealed relationships between the abundance of coral reef taxa and local conditions, especially at small scales. However, a rigorous test of covariation requires a robust dataset collected across wide environmental or experimental gradients. Here, we surveyed spatial variability in the densities of major coral reef functional groups at 122 sites along a 70 km expanse of the leeward, forereef habitat of Curaçao in the southern Caribbean. These data were used to test the degree to which spatial variability in community composition could be predicted based on assumed functional relationships and site-specific anthropogenic, physical, and ecological conditions. In general, models revealed less power to describe the spatial variability of fish biomass than cover of reef builders (R2 of best-fit models: 0.25 [fish] and 0.64 [reef builders]). The variability in total benthic cover of reef builders was best described by physical (wave exposure and reef relief) and ecological (turf algal height and coral recruit density) predictors. No metric of anthropogenic pressure was related to spatial variation in reef builder cover. In contrast, total fish biomass showed a consistent (albeit weak) association with anthropogenic predictors (fishing and diving pressure). As is typical of most environmental gradients, the spatial patterns of both fish biomass density and reef builder cover were spatially autocorrelated. Residuals from the best-fit model for fish biomass retained a signature of spatial autocorrelation while the best-fit model for reef builder cover removed spatial autocorrelation, thus reinforcing our finding that environmental predictors were better able to describe the spatial variability of reef builders than that of fish biomass. As we seek to understand spatial variability of coral reef communities at the scale of most management units (i.e., at kilometer- to island-scales), distinct and scale-dependent perspectives will be needed when considering different functional groups.
Journal Article
Changes in benthic community composition associated with the outbreak of the corallimorph, Rhodactis howesii, at Palmyra Atoll
2019
Few studies have documented the spatial and temporal dynamics of highly invasive species in coral reef benthic communities. Here, we quantified the ecological dynamics of invasion by a corallimorph, Rhodactis howesii, at Palmyra Atoll in the central Pacific. A localized outbreak of this species was first observed following a shipwreck at Palmyra in 1991 and has subsequently spread across hectares, reaching 100% cover in some areas. We examined the spatial and temporal dynamics of this invasion, and its impact on the benthic community, using a combination of permanent photoquadrats and large-scale photomosaic imagery. Our data revealed two distinct patterns in the spatial dynamics of R. howesii on the reef. First, following the removal of the shipwreck in 2013, the cover of the corallimorph in the immediate vicinity of the wreck decreased markedly, with crustose coralline algae (CCA), an important reef-builder, dominating the newly available substrate. However, in contrast to the decline at the epicenter of the invasion, the corallimorph has spread to additional sites around the atoll where increases in abundance have been associated with decreases in hard coral cover. Reductions in percent cover and corallimorph patch size near the epicenter of the outbreak, coupled with increases in cover and patch size and appearance of the corallimorph at other locations around Palmyra, demonstrate the dynamic nature of this “invasion.” Further, we found that the corallimorph settled disproportionately often on patches of turf or CCA cover, but can then overgrow all benthic competitors following establishment. This study provides evidence that R. howesii has the capacity to be highly invasive on coral reefs and highlights the importance of large-scale, long-term monitoring efforts to capture the dynamic nature of such invasions.
Journal Article