Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
27 result(s) for "Ezhov, Marat V"
Sort by:
Clearance and Utilization of Dicarbonyl-Modified LDL in Monkeys and Humans
The kinetics of elimination of various dicarbonyl-modified low-density lipoproteins from the bloodstream of Macaca mulatta monkeys were investigated. The low-density lipoproteins (LDL) in the monkey blood plasma were isolated by density gradient ultracentrifugation and labeled in vitro with the fluorescent dye FITC; thereupon, they were modified with different natural low molecular-weight dicarbonyls: malondialdehyde (MDA), glyoxal, or methylglyoxal. The control native FITC-labeled LDL and dicarbonyl-modified FITC-labeled LDL were injected into the monkey’s ulnar vein; thereafter, blood samples were taken at fixed time intervals during 24 h. The plasma level of FITC-labeled LDL was determined with spectrofluorimetry. The study established that glyoxal- and monkeysglyoxal-labeled LDL circulated in monkey virtually at the same time as native (non-modified) LDL. In contrast, MDA-modified LDL disappeared from the blood extremely rapidly. Administration of the PCSK9 inhibitor involocumab (which increases LDL utilization) to patients with coronary heart disease (CHD) was found to significantly reduce levels of MDA-modified LDL.
Effectiveness and Safety of Fenofibrate in Routine Treatment of Patients with Hypertriglyceridemia and Metabolic Syndrome
Background: Multiple trials have demonstrated the efficacy of fenofibrate for the management of dyslipidemia. Real-world evidence may provide important insights into the effectiveness and safety of fenofibrate in patients with metabolic syndrome and elevated triglyceride (TG) levels, but such evidence is currently scarce. Materials and Methods: A non-interventional study was conducted among routine healthcare providers. Patients with TG levels of >2.3 mmol/L on stable statin therapy starting fenofibrate treatment were enrolled. Data on medical history, fenofibrate treatment, change in lipid levels, and C-reactive protein (CRP) were collected from medical records every 3 months for 6 to 7 months of observation. Results: Overall, 988 patients receiving fenofibrate were enrolled (median age [95% CI] 60 [26.0–86.0] years), and 46.4% of the participants were females. Most patients had concomitant cardiovascular disease. A baseline TG level of 3.6 ± 1.5 mmol/L was reduced by 50.1% to 1.7 ± 0.58 mmol/L at 6 months of treatment (p < 0.001). Baseline non-high-density lipoprotein cholesterol (non-HDL-C) levels decreased by 33.7% at 6 months. Total cholesterol and low-density lipoprotein levels by the end of follow-up were reduced by 24.7 and 25.5% (p < 0.001 for both). C-reactive protein level decreased more than 39% from baseline. Conclusions: Fenofibrate in a real-world setting significantly reduced TG, LDL-C, and non-HDL-C levels. In addition, a C-reactive protein level reduction of 39% was achieved.
Lipoprotein(a) in an adult sample from the Russian population: distribution and association with atherosclerotic cardiovascular diseases
Lipoprotein(a) (Lp(a)) is recognized as an independent risk factor for atherosclerotic cardiovascular disease (ASCVD). The aim of this study was to estimate the distribution of Lp(a) levels in working age adults from the Russian population and to assess its association with ischemic heart disease (IHD), myocardial infarction (MI), stroke, diabetes mellitus (DM), and arterial hypertension (AH). This substudy of the population-based study \"Epidemiology of Cardiovascular Diseases and their Risk Factors in Some Regions of the Russian Federation\" (ESSE-RF) included 8461 subjects aged 25-64 years (63.7% women) without lipid-lowering drugs. Atherosclerotic cardiovascular disease was self-reported. Lp(a), apolipoproteins AI and B, and lipid and glucose levels in blood serum were determined. The prevalence of Lp(a) ≥ 30 mg/dl was 20.5% and 23.0%, and prevalence of Lp(a) ≥ 50 mg/dl was 13.3% and 15.2%, in men and women, respectively. An association of Lp(a) with IHD, MI, and AH, but not with stroke and DM, was shown. A cut-off level of Lp(a) of 9 mg/dl was determined, above which there was increased frequency of MI (by 59.2%, = 0.02), IHD (by 33.4%, < 0.001), and AH (by 11.6%, < 0.001). In the multivariate analysis only the association of Lp(a) with IHD (1.19 (1.01-1.41), = 0.038) and MI (1.57 (1.06-2.38), = 0.028) remained significant. Lipoprotein(a) level ≥ 30 mg/dl was detected in every fifth adult aged 25-64 years. Increased risk of MI and IHD starts at an Lp(a) serum level above 9 mg/dl.
Lipoprotein(a) and Blood Monocytes as Factors for Progression of Carotid Atherosclerosis in Patients with Premature Coronary Heart Disease
Background. Elevated lipoprotein(a) [Lp(a)] levels are a key factor in the early formation and progression of atherosclerosis. Monocytes in individuals with an elevated Lp(a) level are represented by an activated inflammatory phenotype and have an increased ability for transendothelial migration. This work studies the association between Lp(a), monocytes, and the progression of carotid atherosclerosis in patients with premature coronary heart disease (CHD). Methods. This study included 102 patients with CHD manifested before 55 in men and 60 in women who underwent two carotid duplex scans with an interval of 5 [3; 8] years. The criteria for the progression of carotid atherosclerosis were the appearance of new plaque and an increase in stenosis by >10% in any of the six segments. The lipid profile, Lp(a), and hematology with the calculation of the lymphocyte–monocyte ratio (LMR) were determined in all the patients. Results. The median blood monocyte count was 0.54 × 109/L, and the median LMR was 4.18. In 70 patients, we revealed the criteria for carotid atherosclerosis progression. The groups did not differ by demographics, risk factors, or the blood lipid and lipoprotein levels, except for Lp(a); this concentration was higher in the patients with carotid atherosclerosis progression. The odds of atherosclerosis progression were highest in the patients with an elevated Lp(a) level and a blood monocyte count above the median (16.8, 3.4–83.0, p < 0.001). Carotid atherosclerosis progression was associated with LMR < 4.18 and an elevated Lp(a) level (OR = 4.3, 1.1–17.2, p = 0.04) and not associated with the patients with Lp(a) levels < 30 mg/dL and an LMR above the median. Conclusions. An elevated Lp(a) level and monocyte count provide the highest probability of the progression of carotid atherosclerosis in patients with premature CHD.
Comparative Efficacy and Safety of Statin Monotherapy and Statin plus Ezetimibe Combination in a Real-World Setting
Background: The objective of this study was to conduct a comparative evaluation of the effectiveness of ezetimibe in combination with statins or statin monotherapy in patients with hypercholesterolemia in a real-world setting. Methods: It was a retrospective multicenter observational study conducted in Russia. We included patients who received statins or a combination of statins with ezetimibe for ≥3 months. The primary endpoint of this study was the frequency of achieving low-density lipoprotein cholesterol (LDL-C) goal levels at the time of enrollment in the study (%). Results: The full analysis set consisted of 1000 patients: 250 subjects in the statin monotherapy group and 750 subjects in the combination group. The groups did not differ in clinical, demographic, or laboratory variables, except for a higher prevalence of hypertension and higher baseline lipid values in the statin monotherapy group. During treatment, the LDL-C concentration decreased by 1.10 ± 1.04 mmol/L (change of −27.5 ± 28.5% from baseline) in the statin monotherapy group and by 1.55 ± 1.17 mmol/L (change of −38.2 ± 25.6% from baseline) in the combination therapy group, p < 0.001. The target LDL-C level was achieved in 22.4% of the patients in the monotherapy group compared with 28.8% of the patients in the combination therapy group, p = 0.049. Conclusions: In real-world clinical practice, statin/ezetimibe combination therapy demonstrated a more frequent achievement of target LDL-C levels compared with statin monotherapy. The addition of ezetimibe to statin therapy increased the probability of achieving LDL-C level goals by 29%.
Lipoprotein(a) and Its Autoantibodies in Association with Calcific Aortic Valve Stenosis
Aortic valve stenosis is the most common valvular heart disease in the Western world. Lipoprotein(a) (Lp(a)) is an independent risk factor of coronary heart disease (CHD) and calcific aortic valve stenosis (CAVS). The aim of this study was to assess the role of Lp(a) and its autoantibodies [autoAbs] in CAVS in patients with and without CHD. We included 250 patients (mean age 69 ± 3 years, males 42%) and divided them into three groups. There were two groups of patients with CAVS depending on the presence (group 1) or absence of CHD (group 2). The control group included the patients without CHD or CAVS. According to logistic regression analysis, levels of Lp(a), IgM autoAbs to oxidized Lp(a) (oxLp(a)), and age were independent predictors of CAVS. A concomitant increase in Lp(a) level (≥30 mg/dL) and a decrease in IgM autoAbs concentration (<9.9 lab. Units) are associated with CAVS with an odds ratio (OR) of 6.4, p < 0.01, and with CAVS and CHD with an OR of 17.3, p < 0.001. IgM autoantibodies to oxLp(a) are associated with calcific aortic valve stenosis regardless of Lp(a) concentration and other risk factors. Higher Lp(a) and lower IgM autoantibodies to oxLp(a) levels are associated with a much higher risk of calcific aortic valve stenosis.
The Association of Lipoprotein(a) and Circulating Monocyte Subsets with Severe Coronary Atherosclerosis
Background and aims: Chronic inflammation associated with the uncontrolled activation of innate and acquired immunity plays a fundamental role in all stages of atherogenesis. Monocytes are a heterogeneous population and each subset contributes differently to the inflammatory process. A high level of lipoprotein(a) (Lp(a)) is a proven cardiovascular risk factor. The aim of the study was to investigate the association between the increased concentration of Lp(a) and monocyte subpopulations in patients with a different severity of coronary atherosclerosis. Methods: 150 patients (124 males) with a median age of 60 years undergoing a coronary angiography were enrolled. Lipids, Lp(a), autoantibodies, blood cell counts and monocyte subpopulations (classical, intermediate, non-classical) were analyzed. Results: The patients were divided into two groups depending on the Lp(a) concentration: normal Lp(a) < 30 mg/dL (n = 82) and hyperLp(a) ≥ 30 mg/dL (n = 68). Patients of both groups were comparable by risk factors, autoantibody levels and blood cell counts. In patients with hyperlipoproteinemia(a) the content (absolute and relative) of non-classical monocytes was higher (71.0 (56.6; 105.7) vs. 62.2 (45.7; 82.4) 103/mL and 17.7 (13.0; 23.3) vs. 15.1 (11.4; 19.4) %, respectively, p < 0.05). The association of the relative content of non-classical monocytes with the Lp(a) concentration retained a statistical significance when adjusted for gender and age (r = 0.18, p = 0.03). The severity of coronary atherosclerosis was associated with the Lp(a) concentration as well as the relative and absolute (p < 0.05) content of classical monocytes. The high content of non-classical monocytes (OR = 3.5, 95% CI 1.2–10.8) as well as intermediate monocytes (OR = 8.7, 2.5–30.6) in patients with hyperlipoproteinemia(a) were associated with triple-vessel coronary disease compared with patients with a normal Lp(a) level and a low content of monocytes. Conclusion: Hyperlipoproteinemia(a) and a decreased quantity of classical monocytes were associated with the severity of coronary atherosclerosis. The expansion of CD16+ monocytes (intermediate and non-classical) in the presence of hyperlipoproteinemia(a) significantly increased the risk of triple-vessel coronary disease.
Lipoprotein(a), Immunity, and Inflammation in Polyvascular Atherosclerotic Disease
Background and aims: lipoprotein(a) (Lp(a)) is a genetically determined risk factor for coronary artery disease and its complications, although data on the association with other vascular beds and the severity of atherosclerosis is limited. The aim of this study was to evaluate the association of atherosclerosis of various vascular beds with Lp(a), as well as its autoantibodies and generalized inflammatory markers. Material and methods: this study included 1288 adult patients with clinical and imaging examination of three vascular beds (coronary, carotid, and lower limb arteries). Patients were categorized according to the number of affected vascular beds (with at least one atherosclerotic stenosis ≥50%): 0 (n = 339), 1 (n = 470), 2 (n = 315), 3 (n = 164). We assessed blood cell count, lipid profile, C-reactive protein, circulating immune complexes, Lp(a), and its autoantibodies. Results: the number of affected vascular beds was associated with an increasing level of Lp(a) and a lower level of IgM autoantibodies to Lp(a). Hyperlipoproteinemia(a) (Lp(a) ≥ 30 mg/dL) was detected more frequently in patients with atherosclerosis. In logistic regression analysis adjusted for age, sex, hypertension, type 2 diabetes, and smoking, an elevated Lp(a) level was independently associated with stenotic atherosclerosis and lesion severity. There was a positive association of the number of affected vascular beds with C-reactive protein (r = 0.21, p < 0.01) and a negative association with circulating immune complexes (r = −0.29, p < 0.01). The neutrophil-to-lymphocyte ratio was significantly higher and the lymphocyte-to-monocyte ratio was significantly lower in patients with atherosclerosis compared to the controls (p < 0.01). Conclusion: Lp(a), C-reactive protein, circulating immune complexes, and neutrophil-to-lymphocyte ratio are associated with the stenotic atherosclerosis of different vascular beds. Lp(a) levels increase and IgM autoantibodies to Lp(a) decrease with the number of affected vascular beds.
Lipoprotein(a) and Low-Molecular-Weight Apo(a) Phenotype as Determinants of New Cardiovascular Events in Patients with Premature Coronary Heart Disease
Background. Lipoprotein(a) (Lp(a)) is a genetic risk factor of atherosclerotic cardiovascular diseases (ASCVDs). Proprotein convertase subtilisin/kexin type 9 (PCSK9) is related to vascular inflammation and detected in atherosclerotic plaques. A temporary increase in the circulating concentration of PCSK9 and Lp(a) was shown in patients with myocardial infarction (MI). The aim of this study was to evaluate the role of the apo(a) phenotype and the Lp(a) concentration as well as its complex with PCSK9 in the development of cardiac events and MI in patients with a premature manifestation of coronary heart disease (CHD). Methods. In a prospective study with retrospective data collection, we included 116 patients with premature CHD who were followed for a median of 14 years. The medical history and information on cardiovascular events after an initial exam as well as data on the levels of lipids, Lp(a), PCSK9, PCSK9-Lp(a) complex, and apo(a) phenotype were obtained. Results. The patients were divided into two groups depending on the presence of a low- (LMW, n = 52) or high-molecular weight (HMW, n = 64) apo(a) phenotype. LMW apo(a) phenotype (odds ratio 2.3 (1.1 to 4.8), p = 0.03), but not elevated Lp(a) (1.9 (0.8–4.6), p = 0.13), was an independent predictor for the development of MI after adjustment for sex, age of CHD debut, initial lipids levels, and lipid-lowering treatment. The apo(a) phenotype also determined the relationship between Lp(a) and PCSK9 concentrations. The level of the PCSK9-Lp(a) complex was higher in LMW apo(a) patients. Conclusion. The LMW apo(a) phenotype is a risk factor for non-fatal MI in a long-term prospective follow-up of patients with premature CHD, and this link could be mediated via PCSK9.
Lipoprotein(a) and Cardiovascular Outcomes after Revascularization of Carotid and Lower Limbs Arteries
Background: Despite high-intensity lipid-lowering therapy, there is a residual risk of cardiovascular events that could be associated with lipoprotein(a) (Lp(a)). It has been shown that there is an association between elevated Lp(a) level and cardiovascular outcomes in patients with coronary heart disease. Data about the role of Lp(a) in the development of cardiovascular events after peripheral revascularization are scarce. Purpose: To evaluate the relationship of Lp(a) level with cardiovascular outcomes after revascularization of carotid and lower limbs arteries. Methods: The study included 258 patients (209 men, mean age 67 years) with severe carotid and/or lower extremity artery disease, who underwent successful elective peripheral revascularization. The primary endpoint was the composite of nonfatal myocardial infarction, nonfatal stroke, or cardiovascular death. The secondary endpoint was the composite of primary endpoint and repeated revascularization. Results: For 36-month follow-up, 29 (11%) primary and 128 (50%) secondary endpoints were registered. There was a greater risk of primary (21 (8%) vs. 8 (3%); hazard ratio (HR), 3.0; 95% confidence interval (CI) 1.5–6.3; p < 0.01) and secondary endpoints (83 (32%) vs. 45 (17%), HR, 2.8; 95% CI 2.0–4.0; p < 0.01) in patients with elevated Lp(a) level (≥30 mg/dL) compared to patients with Lp(a) < 30 mg/dL. Multivariable-adjusted Cox regression analysis revealed that Lp(a) was independently associated with the incidence of cardiovascular outcomes. Conclusions: Patients with peripheral artery diseases have a high risk of cardiovascular events. Lp(a) level above 30 mg/dL is significantly and independently associated with cardiovascular events during 3-year follow-up after revascularization of carotid and lower limbs arteries.