Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
300
result(s) for
"Fabiani, Marco"
Sort by:
Recurrent herpes simplex virus-1 infection induces hallmarks of neurodegeneration and cognitive deficits in mice
by
Palamara, Anna Teresa
,
Celestino, Ignacio
,
Grassi, Claudio
in
Accumulation
,
Activation
,
Advertising executives
2019
Herpes simplex virus type 1 (HSV-1) is a DNA neurotropic virus, usually establishing latent infections in the trigeminal ganglia followed by periodic reactivations. Although numerous findings suggested potential links between HSV-1 and Alzheimer's disease (AD), a causal relation has not been demonstrated yet. Hence, we set up a model of recurrent HSV-1 infection in mice undergoing repeated cycles of viral reactivation. By virological and molecular analyses we found: i) HSV-1 spreading and replication in different brain regions after thermal stress-induced virus reactivations; ii) accumulation of AD hallmarks including amyloid-β protein, tau hyperphosphorylation, and neuroinflammation markers (astrogliosis, IL-1β and IL-6). Remarkably, the progressive accumulation of AD molecular biomarkers in neocortex and hippocampus of HSV-1 infected mice, triggered by repeated virus reactivations, correlated with increasing cognitive deficits becoming irreversible after seven cycles of reactivation. Collectively, our findings provide evidence that mild and recurrent HSV-1 infections in the central nervous system produce an AD-like phenotype and suggest that they are a risk factor for AD.
Journal Article
Optimizing clinical exome design and parallel gene-testing for recessive genetic conditions in preconception carrier screening: Translational research genomic data from 14,125 exomes
by
Rodriguez, Julio Martin
,
Capalbo, Antonio
,
Jiménez, David
in
Accounting
,
Adult
,
Bioinformatics
2019
Limited translational genomic research data have been reported on the application of exome sequencing and parallel gene testing for preconception carrier screening (PCS). Here, we present individual-level data from a large PCS program in which exome sequencing was routinely performed on either gamete donors (5,845) or infertile patients (8,280) undergoing in vitro fertilization (IVF) treatment without any known family history of inheritable genetic conditions. Individual-level data on pathogenic variants were used to define conditions for PCS based on criteria for severity, penetrance, inheritance pattern, and age of onset. Fetal risk was defined based on actual carrier frequency data accounting for the specific inheritance pattern (fetal disease risk, FDR). In addition, large-scale application of exome sequencing for PCS allowed a deep investigation of the incidence of medically actionable secondary findings in this population. Exome sequencing achieved remarkable clinical sensitivity for reproductive risk of highly penetrant childhood-onset disorders (1/337 conceptions) through analysis of 114 selected gene-condition pairs. A significant contribution to fetal disease risk was observed for rare (carrier rate < 1:100) and X-linked conditions (16.7% and 41.2% of total FDR, respectively). Subgroup analysis of 776 IVF couples identified 37 at increased reproductive risk (4.8%; 95% CI = 3.4-6.5). Further, two additional couples had increased risk for very rare conditions when both members of a parental pair were treated as a unit and the search was extended to the entire exome. About 2.3% of participants showed at least one pathogenic variant for genes included in the updated American College of Medical Genetics and Genomics v2.0 list of secondary findings. Gamete donors and IVF couples showed similar carrier burden for both carrier screening and secondary findings, indicating no causal relationship to fertility. These translational research data will facilitate development of more effective PCS strategies that maximize clinical sensitivity with minimal counterproductive effects.
Journal Article
Multi-analytical test based on serum miRNAs and proteins quantification for ovarian cancer early detection
2021
Advanced ovarian cancer is one of the most lethal gynecological tumor, mainly due to late diagnoses and acquired drug resistance. MicroRNAs (miRNAs) are small-non coding RNA acting as tumor suppressor/oncogenes differentially expressed in normal and epithelial ovarian cancer and has been recognized as a new class of tumor early detection biomarkers as they are released in blood fluids since tumor initiation process. Here, we evaluated by droplet digital PCR (ddPCR) circulating miRNAs in serum samples from healthy (N = 105) and untreated ovarian cancer patients (stages I to IV) (N = 72), grouped into a discovery/training and clinical validation set with the goal to identify the best classifier allowing the discrimination between earlier ovarian tumors from health controls women. The selection of 45 candidate miRNAs to be evaluated in the discovery set was based on miRNAs represented in ovarian cancer explorative commercial panels. We found six miRNAs showing increased levels in the blood of early or late-stage ovarian cancer groups compared to healthy controls. The serum levels of miR-320b and miR-141-3p were considered independent markers of malignancy in a multivariate logistic regression analysis. These markers were used to train diagnostic classifiers comprising miRNAs (miR-320b and miR-141-3p) and miRNAs combined with well-established ovarian cancer protein markers (miR-320b, miR-141-3p, CA-125 and HE4). The miRNA-based classifier was able to accurately discriminate early-stage ovarian cancer patients from health-controls in an independent sample set (Sensitivity = 80.0%, Specificity = 70.3%, AUC = 0.789). In addition, the integration of the serum proteins in the model markedly improved the performance (Sensitivity = 88.9%, Specificity = 100%, AUC = 1.000). A cross-study validation was carried out using four data series obtained from Gene Expression Omnibus (GEO), corroborating the performance of the miRNA-based classifier (AUCs ranging from 0.637 to 0.979). The clinical utility of the miRNA model should be validated in a prospective cohort in order to investigate their feasibility as an ovarian cancer early detection tool.
Journal Article
Experimental Data Based Machine Learning Classification Models with Predictive Ability to Select in Vitro Active Antiviral and Non-Toxic Essential Oils
by
Palamara, Anna Teresa
,
Sabatino, Manuela
,
Fabiani, Marco
in
Animals
,
Antiviral Agents - isolation & purification
,
Antiviral Agents - pharmacology
2020
In the last decade essential oils have attracted scientists with a constant increase rate of more than 7% as witnessed by almost 5000 articles. Among the prominent studies essential oils are investigated as antibacterial agents alone or in combination with known drugs. Minor studies involved essential oil inspection as potential anticancer and antiviral natural remedies. In line with the authors previous reports the investigation of an in-house library of extracted essential oils as a potential blocker of HSV-1 infection is reported herein. A subset of essential oils was experimentally tested in an in vitro model of HSV-1 infection and the determined IC50s and CC50s values were used in conjunction with the results obtained by gas-chromatography/mass spectrometry chemical analysis to derive machine learning based classification models trained with the partial least square discriminant analysis algorithm. The internally validated models were thus applied on untested essential oils to assess their effective predictive ability in selecting both active and low toxic samples. Five essential oils were selected among a list of 52 and readily assayed for IC50 and CC50 determination. Interestingly, four out of the five selected samples, compared with the potencies of the training set, returned to be highly active and endowed with low toxicity. In particular, sample CJM1 from Calaminta nepeta was the most potent tested essential oil with the highest selectivity index (IC50 = 0.063 mg/mL, SI > 47.5). In conclusion, it was herein demonstrated how multidisciplinary applications involving machine learning could represent a valuable tool in predicting the bioactivity of complex mixtures and in the near future to enable the design of blended essential oil possibly endowed with higher potency and lower toxicity.
Journal Article
Digenic Origin of Difference of Sex Development in a Patient Harbouring DHX37 and MAMLD1 Variants
by
Giorlandino, Claudio
,
Mesoraca, Alvaro
,
Libotte, Francesco
in
Amenorrhea
,
Case Report
,
Case reports
2024
Background . The diagnostic process for identifying variations in sex development (DSD) remains challenging due to the limited availability of evidence pertaining to the association between phenotype and genotype. DSD incidence is reported as 2 in 10,000 births, and the etiology has been attributed to genetic causes. Case Presentation . The present study investigated genetic causes implicated in a case of a 15‐year‐old 46, XY patient, raised as a girl. Genetic analysis by clinical exome sequencing (CES) showed a digenic inheritance due to two known pathogenic mutations in the DHX37 gene and the MAMLD1 gene, while we excluded variants with pathogenic significance in 209 DSD‐related genes. Conclusions . Based on our literature review, this is the first case with the combined presence of pathogenic mutations in the MAMLD1 gene and DHX37 gene in a patient with gonadal dysgenesis.
Journal Article
Maternal Folate Receptor Alpha Autoantibodies and Increased Fetal Nuchal Translucency as Potential Early Markers of Autism Spectrum Disorder
2025
Purpose To investigate the association between increased fetal nuchal translucency (NT) and maternal folate receptor alpha autoantibodies (FRAA) positivity, and to evaluate the subsequent risk of non‐syndromic autism spectrum disorder (ASD) in offspring. Methods A total of 3600 first‐trimester ultrasounds were screened at a fetal medicine center. Among these, 27 fetuses with markedly increased NT (≥ 3.5 mm) underwent invasive prenatal diagnosis, including karyotyping, CGH array, and postnatally whole‐exome sequencing (WES) when standard tests were negative. Maternal serum samples were tested for FRAA using ELISA. Eleven pregnancies with negative genetic testing were followed longitudinally, and neurodevelopmental outcomes in children were assessed up to 36 months using ADOS‐2 and DSM‐5 criteria. Findings Among the 11 fetuses with negative genetic outcomes, 4 mothers tested positive for FRAA. All four FRAA‐positive offspring were later diagnosed with ASD, while only one of the seven FRAA‐negative offspring received an ASD diagnosis. FRAA‐positive cases exhibited markedly increased NT (≥ 3.5 mm) but no pathogenic genetic variants, suggesting an immune‐mediated etiology. FRAA levels persisted in maternal and neonatal serum, implying ongoing exposure during gestation. Conclusion FRAA positivity in pregnancies with isolated markedly increased NT may serve as an early biomarker of increased ASD risk in offspring. These findings support the hypothesis of an immune‐metabolic mechanism contributing to ASD and suggest potential preventive interventions such as folinic acid supplementation. Maternal folate receptor alpha autoantibodies (FRAA) were associated with isolated increased fetal nuchal translucency and subsequent autism spectrum disorder (ASD) in offspring. FRAA positivity may represent an early biomarker of neurodevelopmental risk, suggesting potential preventive strategies such as folinic acid supplementation.
Journal Article
Mild Symptomatic SARS-CoV-2 P.1 (B.1.1.28) Infection in a Fully Vaccinated 83-Year-Old Man
by
Giorlandino, Claudio
,
Mesoraca, Alvaro
,
Fabiani, Marco
in
Antibodies
,
Brazil
,
Brazilian variant
2021
The novel severe acute respiratory syndrome coronavirus (SARS-CoV-2) and the associated coronavirus disease 2019 (COVID-19) continue to spread throughout the world, causing more than 120 million infections. Several variants of concern (VOCs) have emerged and spread with implications for vaccine efficacy, therapeutic antibody treatments, and possible reinfections. On 17 March 2021, several VOCs were detected, including lineage B.1.1.7, first identified in the UK, B.1.351 in South Africa, Lineage P.1 (B.1.1.28.1) in Brazil, and novel Sub-Lineage A (A.23.1), reported in Uganda, and B.1.525, reported in Nigeria. Here, we describe an 83-year-old man infected with the SARS-CoV-2 P.1 variant after two doses of the BNT162b2 mRNA COVID-19 vaccine.
Journal Article
Experimental Investigation of a H2O2 Hybrid Rocket with Different Swirl Injections and Fuels
by
Bianchi, Daniele
,
Nichelini, Luca
,
Barato, Francesco
in
Efficiency
,
High density polyethylenes
,
hybrid rockets
2024
Hybrid rockets have very interesting characteristics like simplicity, reliability, safety, thrust modulation, environmental friendliness and lower costs, which make them very attractive for several applications like sounding rockets, small launch vehicles, upper stages, hypersonic test-beds and planetary landers. In recent years, advancements have been made to increase hybrid motor performance, and two of the most promising solutions are vortex injection and paraffin-based fuels. Moreover, both technologies can be also used to tailor the fuel regression rate, in the first case varying the swirl intensity, and in the second case with the amount and type of additives. In this way, it is possible not only to design high-performing hybrid motors, but also to adjust their grain and chamber geometries to different mission requirements, particularly regarding thrust and burning time. In this paper, the knowledge about these two technical solutions and their coupling is extended. Three sets of experimental campaigns were performed in the frame of the Italian Space Agency-sponsored PHAEDRA program. The first one investigated a reference paraffin fuel with axial and standard vortex injection. The second campaign tested vortex injection with low values of swirl numbers down to 0.5 with a conventional plastic fuel, namely polyethylene. Finally, the last campaign tested another, lower regressing, paraffin-based fuel with the same low swirl numbers as the second campaign.
Journal Article
A Rapid and Consistent Method to Identify Four SARS-CoV-2 Variants during the First Half of 2021 by RT-PCR
2022
Since 2020, the COVID-19 pandemic has spread worldwide, causing health, economic, and social distress. Containment strategies rely on rapid and consistent methodology for molecular detection and characterization. Emerging variants of concern (VOCs) are currently associated with increased infectivity and immune escape (natural defence mechanisms and vaccine). Several VOCs have been detected, including Alpha variant (B.1.1.7), Beta variant (B.1.351), Gamma variant (P.1/B.1.1.28.1) and Delta variant (B.1.617.2), first identified in the UK, South Africa, Brazil and India, respectively. Here, a rapid and low-cost technique was validated to distinguish the Alpha, Beta, Gamma, and Delta SARS-CoV-2 variants by detecting spike gene mutations using a real-time reverse transcription polymerase chain reaction methodology (RT-PCR). A total of 132 positive patients affected by coronavirus disease-19 (COVID-19) were analysed by employing RT-PCR to target single-nucleotide polymorphisms (SNPs) to screen spike protein mutations. All data were validated by the next-generation sequencing (NGS) methodology and using sequences from a public database. Among 132 COVID-19-positive samples, we were able to discriminate all of the investigated SARS-CoV-2 variants with 100% concordance when compared with the NGS method. RT-PCR -based assays for identifying circulating VOCs of SARS-CoV-2 resulted in a rapid method used to identify specific SARS-CoV-2 variants, allowing for a better survey of the spread of the virus and its transmissibility in the pandemic phase.
Journal Article
Compound Heterozygous Variants in the IFT140 Gene Associated with Skeletal Ciliopathies
by
Giorlandino, Claudio
,
Mesoraca, Alvaro
,
Cima, Antonella
in
Bladder
,
clinical exome sequencing (CES)
,
Dysplasia
2024
Ciliopathies are rare congenital disorders caused by defects in the structure or function of cilia, which can lead to a wide range of clinical manifestations. Among them, a subset known as skeletal ciliopathies exhibits significant phenotypic overlap and primarily affects skeletal development. This group includes several syndromes with overlapping but distinct clinical features, such as short-rib polydactyly syndrome (SRPS), Jeune asphyxiating thoracic dystrophy (JATD), Mainzer–Saldino syndrome (MZSDS), and cranioectodermal dysplasia (CED), also called Sensenbrenner syndrome. The most characterized features of skeletal ciliopathies are short stature, rhizomelic limb shortening, and thoracic narrowing to varying extents, with JATD presenting the most severe form. Here, we report a fetus with an extension of skeletal ciliopathy phenotype and compound heterozygous variants in the IFT140 gene. The affected fetus had multiple malformations, including increased nuchal transparency (NT), shortened and thick long bones, hypoplastic tibia and fibula, absence of bladder, flat nose, and frontal bossing. Our findings expand the mutation spectrum of IFT140, and the clinical spectrum associated with skeletal ciliopathies, highly relevant in diagnosis prenatal settings.
Journal Article