Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
48 result(s) for "Facon, Benoit"
Sort by:
Fruit fly phylogeny imprints bacterial gut microbiota
One promising avenue for reconciling the goals of crop production and ecosystem preservation consists in the manipulation of beneficial biotic interactions, such as between insects and microbes. Insect gut microbiota can affect host fitness by contributing to development, host immunity, nutrition, or behavior. However, the determinants of gut microbiota composition and structure, including host phylogeny and host ecology, remain poorly known. Here, we used a well‐studied community of eight sympatric fruit fly species to test the contributions of fly phylogeny, fly specialization, and fly sampling environment on the composition and structure of bacterial gut microbiota. Comprising both specialists and generalists, these species belong to five genera from to two tribes of the Tephritidae family. For each fly species, one field and one laboratory samples were studied. Bacterial inventories to the genus level were produced using 16S metabarcoding with the Oxford Nanopore Technology. Sample bacterial compositions were analyzed with recent network‐based clustering techniques. Whereas gut microbiota were dominated by the Enterobacteriaceae family in all samples, microbial profiles varied across samples, mainly in relation to fly identity and sampling environment. Alpha diversity varied across samples and was higher in the Dacinae tribe than in the Ceratitinae tribe. Network analyses allowed grouping samples according to their microbial profiles. The resulting groups were very congruent with fly phylogeny, with a significant modulation of sampling environment, and with a very low impact of fly specialization. Such a strong imprint of host phylogeny in sympatric fly species, some of which share much of their host plants, suggests important control of fruit flies on their gut microbiota through vertical transmission and/or intense filtering of environmental bacteria.
Biological invasion and biological control select for different life histories
Biological invaders have long been hypothesized to exhibit the fast end of the life-history spectrum, with early reproduction and a short lifespan. Here, we examine the rapid evolution of life history within the harlequin ladybird Harmonia axyridis . The species, once used as a biological control agent, is now a worldwide invader. We show that biocontrol populations have evolved a classic fast life history during their maintenance in laboratories. Invasive populations also reproduce earlier than native populations, but later than biocontrol ones. Invaders allocate more resources to reproduction than native and biocontrol individuals, and their reproduction is spread over a longer lifespan. This life history is best described as a bet-hedging strategy. We assert that invasiveness cannot be explained only by invoking faster life histories. Instead, the evolution of life history within invasive populations can progress rapidly and converge to a fine-tuned evolutionary match between the invaded environment and the invader. Understanding how biological invaders displace native species is challenging. Here, the authors compare the evolution of life-history strategies in the harlequin ladybird under laboratory conditions and show that invaders reproduce earlier and allocate more resources to reproduction than natives.
Is There a Genetic Paradox of Biological Invasion?
Bottlenecks in population size can reduce fitness and evolutionary potential, yet introduced species often become invasive. This poses a dilemma referred to as the genetic paradox of invasion. Three characteristics must hold true for an introduced population to be considered paradoxical in this sense. First, it must pass through a bottleneck that reduces genetic variation. Second, despite the bottleneck, the introduced population must not succumb to the many problems associated with low genetic variation. Third, it must adapt to the novel environment. Some introduced populations are not paradoxical as they do not combine these conditions. In some cases, an apparent paradox is spurious, as seen in introduced populations with low diversity in neutral markers that maintain high genetic variation in ecologically relevant traits. Even when the genetic paradox is genuine, unique aspects of a species' biology can allow a population to thrive. We propose research directions into remaining paradoxical aspects of invasion genetics.
Distribution of Endosymbiotic Reproductive Manipulators Reflects Invasion Process and Not Reproductive System Polymorphism in the Little Fire Ant Wasmannia auropunctata
Endosymbiotic reproductive manipulators may have drastic effects on the ecological and evolutionary dynamics of their hosts. The prevalence of these endosymbionts reflects both their ability to manipulate their hosts and the history of the host populations. The little fire ant Wasmannia auropunctata displays a polymorphism in both its reproductive system (sexual versus clonal populations) and the invasive status of its populations (associated to a habitat shift). We first screened for the presence of a diverse array of reproductive parasites in sexual and clonal populations of W. auropunctata, as a means to investigate the role of endosymbionts in reproductive phenotypes. Wolbachia was the only symbiont found and we then focused on its worldwide distribution and diversity in natural populations of W. auropunctata. Using a multilocus scheme, we further characterized the Wolbachia strains present in these populations. We found that almost all the native sexual populations and only a few clonal populations are infected by Wolbachia. The presence of similar Wolbachia strains in both sexual and clonal populations indicates that they are probably not the cause of the reproductive system polymorphism. The observed pattern seems rather associated to the invasion process of W. auropunctata. In particular, the observed loss of Wolbachia in clonal populations, that recurrently emerged from sexual populations, likely resulted from natural heat treatment and/or relaxed selection during the shift in habitat associated to the invasion process.
Modeling spatial expansion of invasive alien species: relative contributions of environmental and anthropogenic factors to the spreading of the harlequin ladybird in France
Species distribution models (SDM) have often been used to predict the potential ranges of introduced species and prioritize management strategies. However, this approach assumes equilibrium between occurrences and environmental gradients, an assumption which is violated during the invasion process, where many suitable sites are empty because the species has not yet reached them. Here we considered the invasive ladybird Harmonia axyridis as a case study to show the benefits of using a dynamic colonization-extinction model that does not assume equilibrium. We used a multi-year occupancy model incorporating environmental, anthropogenic and neighborhood effects, to identify factors that explained spreading variation of this species in France from 2004, when only a few occupied sites were detected, to 2011. We found that anthropogenic factors (urbanization, agriculture, vineyards, and presence/absence of highways) explained more variation in the diffusion process than environmental factors (winter and summer temperatures, wind-speed, and rainfall). The surface of urbanization was the major anthropogenic factor increasing the probability of colonization. The average summer temperature was the main environmental factor affecting colonization, with a negative effect when high or low. The neighborhood effect revealed that colonization was mostly influenced by contributions coming from a radius of 24 km around the focal cell. The contribution of neighborhood decreases over time, suggesting that H. axyridis is reaching its equilibrium in France. This is confirmed by the small discrepancy observed between the performance of our approach and a SDM approach when predicting a single year occupancy pattern at the end of the study period. Our approach has the advantage of explicitly modelling the state of the biological system during the spatial expansion and identifying colonization constraints. This allows managers to explore the effect of different actions on the system at key moments of the invasion process, hence providing a powerful approach to prioritize management strategies.
Bridgehead effect in the worldwide invasion of the biocontrol Harlequin Ladybird
Recent studies of the routes of worldwide introductions of alien organisms suggest that many widespread invasions could have stemmed not from the native range, but from a particularly successful invasive population, which serves as the source of colonists for remote new territories. We call here this phenomenon the invasive bridgehead effect. Evaluating the likelihood of such a scenario is heuristically challenging. We solved this problem by using approximate Bayesian computation methods to quantitatively compare complex invasion scenarios based on the analysis of population genetics (microsatellite variation) and historical (first observation dates) data. We applied this approach to the Harlequin ladybird Harmonia axyridis (HA), a coccinellid native to Asia that was repeatedly introduced as a biocontrol agent without becoming established for decades. We show that the recent burst of worldwide invasions of HA followed a bridgehead scenario, in which an invasive population in eastern North America acted as the source of the colonists that invaded the European, South American and African continents, with some admixture with a biocontrol strain in Europe. This demonstration of a mechanism of invasion via a bridgehead has important implications both for invasion theory (i. e., a single evolutionary shift in the bridgehead population versus multiple changes in case of introduced populations becoming invasive independently) and for ongoing efforts to manage invasions by alien organisms (i. e., heightened vigilance against invasive bridgeheads)
Diet breadth modulates preference - performance relationships in a phytophagous insect community
In most phytophagous insects, larvae are less mobile than adults and their fitness depends on the plant chosen by their mother. To maximize fitness, adult preference and larval performance should thus be correlated. This correlation is not always apparent and seems to increase with the level of specialisation, i.e. specialists have a stronger preference for high quality host plant species compared to generalists. The aim of this study was to test whether the relationship between female preference and larval performance was stronger for specialists than for generalists within a community of fruit flies (Diptera: Tephritidae). A total of six fruit fly species was used, including four generalists, and two specialists co-existing in La Reunion island (France). We estimated oviposition preference through the number of eggs laid and larval performance through the larval survival on 29 different host plants species belonging to 15 families in the laboratory and evaluated the relationship between these two traits. Preference-performance relationship differed according to the degree of specialisation with a strong positive correlation for specialists and no relationship for generalists. These results substantiate the theory that choosing high quality hosts is more important for specialists that are adapted to survive on fewer host plants than for generalists.
The genetic Allee effect: a unified framework for the genetics and demography of small populations
The Allee effect is a theoretical model predicting low growth rates and the possible extinction of small populations. Historically, studies of the Allee effect have focused on demography. As a result, underlying processes other than the direct effect of population density on fitness components are not generally taken into account. There has been heated debate about the potential of genetic processes to drive small populations to extinction, but recent studies have shown that such processes clearly impact small populations over short time scales, and some may generate Allee effects. However, as opposed to the ecological Allee effect, which is underpinned by cooperative interactions between individuals, genetically driven Allee effects require a change in genetic structure to link the decline in population size with a decrease in fitness components. We therefore define the genetic Allee effect as a two‐step process whereby a decrease in population size leads to a change in population genetic structure and, in turn, to a decrease in individual fitness. We describe potential underlying mechanisms and review the evidence for this original type of component Allee effect, using published examples from both plants and animals. The possibility of considering demogenetic feedback in light of genetic Allee effects clarifies the analysis and interpretation of demographic and genetic processes, and the interplay between them, in small populations.
Evolution in biocontrol strains: insight from the harlequin ladybird Harmonia axyridis
After being used as a biocontrol agent against aphids for decades without harmful consequences, the Asian harlequin ladybird Harmonia axyridis has suddenly become an invasive pest on a worldwide scale. We investigate the impact of captive breeding on several traits of this ladybird such as genetic diversity, fecundity, survival and pathogen resistance. We conducted an experiment in the laboratory to compare the fecundity and the susceptibility to the entomopathogenic fungus Beauveria bassiana of wild and biocontrol adults of H. axyridis. We compiled these new findings with already published data. Altogether, our findings suggest that mass rearing of biological control agents may strongly impact genetic diversity and life-history traits. We discuss how such changes may subsequently affect the fitness of biological control strains in natural environments.
Changes in phytophagous insect host ranges following the invasion of their community: Long‐term data for fruit flies
The invasion of an established community by new species can trigger changes in community structure. Invasions often occur in phytophagous insect communities, the dynamics of which are driven by the structure of the host assemblage and the presence of competitors. In this study, we investigated how a community established through successive invasions changed over time, taking the last invasion as the reference. The community included four generalist and four specialist species of Tephritidae fruit flies. We analyzed a long‐term database recording observed numbers of flies per fruit for each species on 36 host plants, over 18 years, from 1991 to 2009. Community structure before the last invasion by Bactrocera zonata in 2000 was described in relation to host plant phylogeny and resource availability. Changes in the host range of each species after the arrival of B. zonata were then documented by calculating diversity indices. The flies in the community occupied three types of niches defined on the basis of plant phylogeny (generalists, Solanaceae specialist, and Cucurbitaceae specialists). After the arrival of B. zonata, no change in the host range of specialist species was observed. However, the host ranges of two generalist species, Ceratitis quilicii and Ceratitis capitata, tended to shrink, as shown by the decreases in species richness and host plant α‐diversity. Our study shows increased host specialization by generalist phytophagous insects in the field following the arrival of an invasive species sharing part of their resources. These findings could be used to improve predictions of new interactions between invaders and recipient communities. In this study, we investigated how a community established through successive invasions changed over time, taking the last invasion as the reference. The flies in the community occupied three types of niches defined on the basis of plant phylogeny (generalists, Solanaceae specialists, and Cucurbitaceae specialists). Our study shows increased host specialization by generalist phytophagous insects in the field following the arrival of an invasive species sharing part of their resources.