Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
37
result(s) for
"Fagnoni, N"
Sort by:
Simulations of primary beam effects on the cosmic bispectrum phase observed with the Hydrogen Epoch of Reionization Array
2022
The 21~cm transition from neutral Hydrogen promises to be the best observational probe of the Epoch of Reionisation. The main difficulty in measuring the 21 cm signal is the presence of bright foregrounds that require very accurate interferometric calibration. Closure quantities may circumvent the calibration requirements but may be, however, affected by direction dependent effects, particularly antenna primary beam responses. This work investigates the impact of antenna primary beams affected by mutual coupling on the closure phase and its power spectrum. Our simulations show that primary beams affected by mutual coupling lead to a leakage of foreground power into the EoR window, which can be up to \\(\\sim4\\) orders magnitude higher than the case where no mutual coupling is considered. This leakage is, however, essentially confined at \\(k < 0.3\\)~\\(h\\)~Mpc\\(^{-1}\\) for triads that include 29~m baselines. The leakage magnitude is more pronounced when bright foregrounds appear in the antenna sidelobes, as expected. Finally, we find that triads that include mutual coupling beams different from each other have power spectra similar to triads that include the same type of mutual coupling beam, indicating that beam-to-beam variation within triads (or visibility pairs) is not the major source of foreground leakage in the EoR window.
Investigating Mutual Coupling in the Hydrogen Epoch of Reionization Array and Mitigating its Effects on the 21-cm Power Spectrum
2024
Interferometric experiments designed to detect the highly redshifted 21-cm signal from neutral hydrogen are producing increasingly stringent constraints on the 21-cm power spectrum, but some k-modes remain systematics-dominated. Mutual coupling is a major systematic that must be overcome in order to detect the 21-cm signal, and simulations that reproduce effects seen in the data can guide strategies for mitigating mutual coupling. In this paper, we analyse 12 nights of data from the Hydrogen Epoch of Reionization Array and compare the data against simulations that include a computationally efficient and physically motivated semi-analytic treatment of mutual coupling. We find that simulated coupling features qualitatively agree with coupling features in the data; however, coupling features in the data are brighter than the simulated features, indicating the presence of additional coupling mechanisms not captured by our model. We explore the use of fringe-rate filters as mutual coupling mitigation tools and use our simulations to investigate the effects of mutual coupling on a simulated cosmological 21-cm power spectrum in a \"worst case\" scenario where the foregrounds are particularly bright. We find that mutual coupling contaminates a large portion of the \"EoR Window\", and the contamination is several orders-of-magnitude larger than our simulated cosmic signal across a wide range of cosmological Fourier modes. While our fiducial fringe-rate filtering strategy reduces mutual coupling by roughly a factor of 100 in power, a non-negligible amount of coupling cannot be excised with fringe-rate filters, so more sophisticated mitigation strategies are required.
Radio antenna design for sky-averaged 21 cm cosmology experiments: the REACH case
2023
Following the reported detection of an absorption profile associated with the 21~cm sky-averaged signal from the Cosmic Dawn by the EDGES experiment in 2018, a number of experiments have been set up to verify this result. This paper discusses the design process used for global 21~cm experiments, focusing specifically on the Radio Experiment for the Analysis of Cosmic Hydrogen (REACH). This experiment will seek to understand and compensate for systematic errors present using detailed modelling and characterization of the instrumentation. There is detailed the quantitative figures of merit and numerical modelling used to assist the design process of the REACH dipole antenna (one of the 2 antenna designs for REACH Phase I). This design process produced a 2.5:1 frequency bandwidth dipole. The aim of this design was to balance spectral smoothness and low impedance reflections with the ability to describe and understand the antenna response to the sky signal to inform the critically important calibration during observation and data analysis.
Hydrogen Epoch of Reionization Array (HERA)
by
Furlanetto, Steve R.
,
Fritz, Randall
,
Zheng, Haoxuan
in
dark ages, reionization, first stars
,
instrumentation: interferometers
,
techniques: interferometric
2017
The Hydrogen Epoch of Reionization Array (HERA) is a staged experiment to measure 21 cm emission from the primordial intergalactic medium (IGM) throughout cosmic reionization (z = 6-12), and to explore earlier epochs of our Cosmic Dawn (z ∼ 30). During these epochs, early stars and black holes heated and ionized the IGM, introducing fluctuations in 21 cm emission. HERA is designed to characterize the evolution of the 21 cm power spectrum to constrain the timing and morphology of reionization, the properties of the first galaxies, the evolution of large-scale structure, and the early sources of heating. The full HERA instrument will be a 350-element interferometer in South Africa consisting of 14 m parabolic dishes observing from 50 to 250 MHz. Currently, 19 dishes have been deployed on site and the next 18 are under construction. HERA has been designated as an SKA Precursor instrument. In this paper, we summarize HERA's scientific context and provide forecasts for its key science results. After reviewing the current state of the art in foreground mitigation, we use the delay-spectrum technique to motivate high-level performance requirements for the HERA instrument. Next, we present the HERA instrument design, along with the subsystem specifications that ensure that HERA meets its performance requirements. Finally, we summarize the schedule and status of the project. We conclude by suggesting that, given the realities of foreground contamination, current-generation 21 cm instruments are approaching their sensitivity limits. HERA is designed to bring both the sensitivity and the precision to deliver its primary science on the basis of proven foreground filtering techniques, while developing new subtraction techniques to unlock new capabilities. The result will be a major step toward realizing the widely recognized scientific potential of 21 cm cosmology.
Journal Article
Cytotoxic chemotherapy preceding apheresis of peripheral blood progenitor cells can affect the early reconstitution phase of naive T cells after autologous transplantation
by
Gibelli, N
,
Pavesi, L
,
Ponchio, L
in
Anesthesia. Intensive care medicine. Transfusions. Cell therapy and gene therapy
,
Antigens, CD - blood
,
Antineoplastic Agents, Phytogenic - therapeutic use
2003
Transient T cell immunodeficiency is a common complication following hematopoietic stem cell transplantation. In breast cancer patients transplanted with autologous peripheral blood progenitor cells (PBPC) harvested after cytotoxic treatment with either cyclophosphamide or epirubicin plus paclitaxel, we evaluated T cells infused in grafts and in peripheral blood during the early reconstitution phase. We found that PBPC grafts harvested after treatment with epirubicin plus paclitaxel contained substantially larger numbers of T cells with less altered composition than after cyclophosphamide. Three months after high-dose cytotoxic chemotherapy, the numbers and the kinetics of circulating naive T cells, but not of memory and CD28- T cells, correlated positively with the number of naive T cells infused PBPC grafts. Finally, retrospective analysis of two cohorts of patients transplanted in different clinical settings with PBPC grafts harvested following cyclophosphamide or epirubicin plus paclitaxel showed apparently different susceptibilities to develop endogenous varicella zoster virus reactivation in the first year after high-dose cytotoxic chemotherapy. On the whole, these data indicate that number and composition of T cells in PBPC grafts vary according to the former cytotoxic therapy, and suggest that autologous transfer of T cells may accelerate the early T cell reconstitution phase and possibly ameliorate immune competence in patients rendered lymphopenic by high-dose chemotherapy.
Journal Article
Hydrogen Epoch of Reionization Array (HERA)
by
Furlanetto, Steve R.
,
Fritz, Randall
,
Zheng, Haoxuan
in
Astronomical Instrumentation, Telescopes, Observatories, and Site Characterization
2017
The Hydrogen Epoch of Reionization Array (HERA) is a staged experiment to measure 21 cm emission from the primordial intergalactic medium (IGM) throughout cosmic reionization (z = 6–12), and to explore earlier epochs of our Cosmic Dawn (z ∼ 30). During these epochs, early stars and black holes heated and ionized the IGM, introducing fluctuations in 21 cm emission. HERA is designed to characterize the evolution of the 21 cm power spectrum to constrain the timing and morphology of reionization, the properties of the first galaxies, the evolution of large-scale structure, and the early sources of heating. The full HERA instrument will be a 350-element interferometer in South Africa consisting of 14 m parabolic dishes observing from 50 to 250 MHz. Currently, 19 dishes have been deployed on site and the next 18 are under construction. HERA has been designated as an SKA Precursor instrument. In this paper, we summarize HERA’s scientific context and provide forecasts for its key science results. After reviewing the current state of the art in foreground mitigation, we use the delay-spectrum technique to motivate high-level performance requirements for the HERA instrument. Next, we present the HERA instrument design, along with the subsystem specifications that ensure that HERA meets its performance requirements. Finally, we summarize the schedule and status of the project. We conclude by suggesting that, given the realities of foreground contamination, current-generation 21 cm instruments are approaching their sensitivity limits. HERA is designed to bring both the sensitivity and the precision to deliver its primary science on the basis of proven foreground filtering techniques, while developing new subtraction techniques to unlock new capabilities. The result will be a major step toward realizing the widely recognized scientific potential of 21 cm cosmology.
Journal Article
Cost Effectiveness of High-Dose Chemotherapy with Autologous Stem Cell Support as Initial Treatment of Aggressive Non-Hodgkin’s Lymphoma
by
Fagnoni, Philippe
,
Woronoff-Lemsi, Marie-Christine
,
Milpied, Noel
in
Adult
,
Antineoplastic Combined Chemotherapy Protocols
,
Antineoplastic Combined Chemotherapy Protocols - economics
2009
Background:
The GOELAMS 072 study showed that first-line high-dose chemotherapy (HDT) with peripheral blood stem cell transplant (PBSCT) support was superior to the standard chemotherapy regimen (cyclophosphamide, doxorubicin, vincristine and prednisone; CHOP) in adults with aggressive non-Hodgkin’s lymphoma (NHL).
Objective:
The aim of the study was to evaluate the pharmacoeconomic profile of HDT with PBSCT support relative to standard CHOP therapy as first-line treatment in adults with aggressive NHL.
Methods:
We performed a cost-effectiveness analysis from the French Public Health Insurance perspective, restricted to hospital costs (€, year 2008 values). The clinical effectiveness criterion was censured overall survival (OS) difference after a median follow-up of 4 years for the entire cohort. A total of 197 patients were included (CHOP, n = 99; HDT, n = 98). Uncertainty was assessed using non-parametric bootstrap simulations and various scenario analyses.
Results:
Five-year OS did not differ significantly between groups for the entire cohort. Nevertheless, subgroup analyses appeared to be more relevant for decision making: among patients with a high-intermediate risk according to the age-adjusted International Prognostic Index (IPI), HDT yielded a significantly higher 5-year OS than CHOP (74% vs 44%; p = 0.001). Among these patients, the mean censured OS survival, adjusted for time discounting and quality of life (QOL), increased with HDT by 1.20 years (95% CI 1.19, 1.21). The cost per life-year saved with HDT was estimated as h34 315 (95% CI 32 683, 35 947) in this subgroup.
Conclusion:
Results suggested thatHDT with PBSCT supportmight be considered a cost-effective strategy among patients with high-intermediate-risk NHL according to the age-adjusted IPI. Its place and its cost effectiveness potential versus, or in combination with, rituximab still need further research.
Journal Article
The Impact of Beam Variations on Power Spectrum Estimation for 21-cm Cosmology I: Simulations of Foreground Contamination for HERA
by
Mahesh, Nivedita
,
Hewitt, Jacqueline N
,
Dillon, Joshua S
in
Antennas
,
Beams (radiation)
,
Calibration
2022
Detecting cosmological signals from the Epoch of Reionization (EoR) requires high-precision calibration to isolate the cosmological signals from foreground emission. In radio interferometery, perturbed primary beams of antenna elements can disrupt the precise calibration, which results in contaminating the foreground-free region, or the EoR window, in the cylindrically averaged power spectrum. For Hydrogen Epoch of Reionization Array (HERA), we simulate and characterize the perturbed primary beams induced by feed motions such as axial, lateral, and tilting motions, above the 14-meter dish. To understand the effect of the perturbed beams, visibility measurements are modeled with two different foreground components, point sources and diffuse sources, and we find different feed motions present a different reaction to each type of sky source. HERA's redundant-baseline calibration in the presence of non-redundant antenna beams due to feed motions introduces chromatic errors in gain solutions, which produces foreground power leakage into the EoR window. The observed leakage from vertical feed motions comes predominately from point sources around zenith. Furthermore, the observed leakage from horizontal and tilting feed motion comes predominately from the diffuse components near the horizon. Mitigation of chromatic gain errors will be necessary for robust detection of the EoR signals with minimal foreground bias, and this will be discussed in the subsequent paper.
Hydrogen Epoch of Reionization Array (HERA) Phase II Deployment and Commissioning
2024
This paper presents the design and deployment of the Hydrogen Epoch of Reionization Array (HERA) phase II system. HERA is designed as a staged experiment targeting 21 cm emission measurements of the Epoch of Reionization. First results from the phase I array are published as of early 2022, and deployment of the phase II system is nearing completion. We describe the design of the phase II system and discuss progress on commissioning and future upgrades. As HERA is a designated Square Kilometer Array (SKA) pathfinder instrument, we also show a number of \"case studies\" that investigate systematics seen while commissioning the phase II system, which may be of use in the design and operation of future arrays. Common pathologies are likely to manifest in similar ways across instruments, and many of these sources of contamination can be mitigated once the source is identified.
Characterization Of Inpaint Residuals In Interferometric Measurements of the Epoch Of Reionization
by
Fritz, Randall
,
Zheng, Haoxuan
,
Carey, Steven
in
Artificial neural networks
,
Data analysis
,
Errors
2023
Radio Frequency Interference (RFI) is one of the systematic challenges preventing 21cm interferometric instruments from detecting the Epoch of Reionization. To mitigate the effects of RFI on data analysis pipelines, numerous inpaint techniques have been developed to restore RFI corrupted data. We examine the qualitative and quantitative errors introduced into the visibilities and power spectrum due to inpainting. We perform our analysis on simulated data as well as real data from the Hydrogen Epoch of Reionization Array (HERA) Phase 1 upper limits. We also introduce a convolutional neural network that capable of inpainting RFI corrupted data in interferometric instruments. We train our network on simulated data and show that our network is capable at inpainting real data without requiring to be retrained. We find that techniques that incorporate high wavenumbers in delay space in their modeling are best suited for inpainting over narrowband RFI. We also show that with our fiducial parameters Discrete Prolate Spheroidal Sequences (DPSS) and CLEAN provide the best performance for intermittent ``narrowband'' RFI while Gaussian Progress Regression (GPR) and Least Squares Spectral Analysis (LSSA) provide the best performance for larger RFI gaps. However we caution that these qualitative conclusions are sensitive to the chosen hyperparameters of each inpainting technique. We find these results to be consistent in both simulated and real visibilities. We show that all inpainting techniques reliably reproduce foreground dominated modes in the power spectrum. Since the inpainting techniques should not be capable of reproducing noise realizations, we find that the largest errors occur in the noise dominated delay modes. We show that in the future, as the noise level of the data comes down, CLEAN and DPSS are most capable of reproducing the fine frequency structure in the visibilities of HERA data.