Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
26
result(s) for
"Failla, Simone"
Sort by:
Sintering, Mechanical and Optical Properties of TiB2 Composites with and without High-Energy Milling
2023
TiB2 is a promising material for several fields including impact-resistant armor, wear-resistant coatings, cutting tools and crucibles given its physical, mechanical and chemical properties, especially due to the combination of high hardness and exceptional wear resistance. It is however very difficult to sinter below 2000 °C, even under mechanical pressure; moreover, the low fracture toughness limits the applicability of the ceramic material. By using sintering additives, it is possible to improve the sintering process and increase the mechanical properties since the additives react with oxidized layers and form secondary phases. In this study, different preparation methods and various combinations of additives (B4C, Si3N4 and MoSi2) via hot pressing sintering have been explored. Through the synergy between optimized process and tailored composition, an almost fully dense material was obtained at 1700 °C with hardness of 24.4 ± 0.2 GPa and fracture toughness of 5.4 ± 0.2 MPa m1/2. However, the highest hardness (24.5 ± 0.2 GPa) and density values were obtained for only the high-energy-milled sample with WC-Co media, featuring a core–shell grain structure. Finally, optical properties for selected samples were measured, identifying the high-energy-milled TiB2 as the sample with the highest spectral selectivity α/ε and solar absorptance.
Journal Article
Multi-Scale Femtosecond-Laser Texturing for Photothermal Efficiency Enhancement on Solar Absorbers Based on TaB2 Ceramics
by
Failla, Simone
,
Trucchi, Daniele M.
,
Bellucci, Alessandro
in
Absorptance
,
Absorptivity
,
Ceramics
2023
Tantalum boride is an ultra-refractory and ultra-hard ceramic known so far for its favorable high-temperature thermo-mechanical properties and also characterized by a low spectral emittance, making it interesting for novel high-temperature solar absorbers for Concentrating Solar Power. In this work, we investigated two types of TaB2 sintered products with different porosities, and on each of them, we realized four femtosecond laser treatments differing in the accumulated laser fluence. The treated surfaces were then characterized by SEM-EDS, roughness analysis, and optical spectrometry. We show that, depending on laser processing parameters, the multi-scale surface textures produced by femtosecond laser machining can greatly increase the solar absorptance, while the spectral emittance increase is significantly lower. These combined effects result in increased photothermal efficiency of the absorber, with interesting perspectives for the application of these ceramics in Concentrating Solar Power and Concentrating Solar Thermal. To the best of our knowledge, this is the first demonstration of successful photothermal efficiency enhancement of ultra-hard ceramics using laser machining.
Journal Article
Enhanced and Selective Absorption of Molybdenum Nanostructured Surfaces for Concentrated Solar Energy Applications
by
Failla, Simone
,
Valentini, Veronica
,
Trucchi, Daniele Maria
in
Ablation
,
Absorptance
,
Absorptivity
2022
Surfaces of commercial molybdenum (Mo) plates have been textured by fs-laser treatments with the aim to form low-cost and efficient solar absorbers and substrates for thermionic cathodes in Concentrated Solar Power conversion devices. Morphological (SEM and AFM), optical (spectrophotometry), and structural (Raman spectroscopy) properties of the samples treated at different laser fluences (from 1.8 to 14 J/cm2) have been characterized after the laser treatments and also following long thermal annealing for simulating the operating conditions of thermionic converters. A significant improvement of the solar absorptance and selectivity, with a maximum value of about four times higher than the pristine sample at a temperature of 800 K, has been detected for sample surfaces treated at intermediate fluences. The effects observed have been related to the light trapping capability of the laser-induced nanotexturing, whereas a low selectivity, together with a high absorptance, could be revealed when the highest laser fluence was employed due to a significant presence of oxide species. The ageing process confirms the performance improvement shown when treated samples are used as solar absorbers, even though, due to chemical modification occurring at the surface, a decrease of the solar absorptance takes place. Interestingly, the sample showing the highest quantity of oxides preserves more efficiently the laser texturing. The observation of this behaviour allows to extend the applicability of the laser treatments since, by further nanostructuring of the Mo oxides, it could be beneficial also for sensing applications.
Journal Article
Sintering, Mechanical and Optical Properties of TiBsub.2 Composites with and without High-Energy Milling
by
Taraborelli, Simone
,
Failla, Simone
,
Sani, Elisa
in
Analysis
,
Composite materials
,
Mechanical properties
2023
TiB[sub.2] is a promising material for several fields including impact-resistant armor, wear-resistant coatings, cutting tools and crucibles given its physical, mechanical and chemical properties, especially due to the combination of high hardness and exceptional wear resistance. It is however very difficult to sinter below 2000 °C, even under mechanical pressure; moreover, the low fracture toughness limits the applicability of the ceramic material. By using sintering additives, it is possible to improve the sintering process and increase the mechanical properties since the additives react with oxidized layers and form secondary phases. In this study, different preparation methods and various combinations of additives (B[sub.4] C, Si[sub.3] N[sub.4] and MoSi[sub.2] ) via hot pressing sintering have been explored. Through the synergy between optimized process and tailored composition, an almost fully dense material was obtained at 1700 °C with hardness of 24.4 ± 0.2 GPa and fracture toughness of 5.4 ± 0.2 MPa m[sup.1/2] . However, the highest hardness (24.5 ± 0.2 GPa) and density values were obtained for only the high-energy-milled sample with WC-Co media, featuring a core–shell grain structure. Finally, optical properties for selected samples were measured, identifying the high-energy-milled TiB[sub.2] as the sample with the highest spectral selectivity α/ε and solar absorptance.
Journal Article
Multi-Scale Femtosecond-Laser Texturing for Photothermal Efficiency Enhancement on Solar Absorbers Based on TaB 2 Ceramics
2023
Tantalum boride is an ultra-refractory and ultra-hard ceramic known so far for its favorable high-temperature thermo-mechanical properties and also characterized by a low spectral emittance, making it interesting for novel high-temperature solar absorbers for Concentrating Solar Power. In this work, we investigated two types of TaB
sintered products with different porosities, and on each of them, we realized four femtosecond laser treatments differing in the accumulated laser fluence. The treated surfaces were then characterized by SEM-EDS, roughness analysis, and optical spectrometry. We show that, depending on laser processing parameters, the multi-scale surface textures produced by femtosecond laser machining can greatly increase the solar absorptance, while the spectral emittance increase is significantly lower. These combined effects result in increased photothermal efficiency of the absorber, with interesting perspectives for the application of these ceramics in Concentrating Solar Power and Concentrating Solar Thermal. To the best of our knowledge, this is the first demonstration of successful photothermal efficiency enhancement of ultra-hard ceramics using laser machining.
Journal Article
Multi-Scale Femtosecond-Laser Texturing for Photothermal Efficiency Enhancement on Solar Absorbers Based on TaBsub.2 Ceramics
by
Failla, Simone
,
Bellucci, Alessandro
,
Sani, Elisa
in
Ceramic materials
,
Ceramics
,
Identification and classification
2023
Tantalum boride is an ultra-refractory and ultra-hard ceramic known so far for its favorable high-temperature thermo-mechanical properties and also characterized by a low spectral emittance, making it interesting for novel high-temperature solar absorbers for Concentrating Solar Power. In this work, we investigated two types of TaB[sub.2] sintered products with different porosities, and on each of them, we realized four femtosecond laser treatments differing in the accumulated laser fluence. The treated surfaces were then characterized by SEM-EDS, roughness analysis, and optical spectrometry. We show that, depending on laser processing parameters, the multi-scale surface textures produced by femtosecond laser machining can greatly increase the solar absorptance, while the spectral emittance increase is significantly lower. These combined effects result in increased photothermal efficiency of the absorber, with interesting perspectives for the application of these ceramics in Concentrating Solar Power and Concentrating Solar Thermal. To the best of our knowledge, this is the first demonstration of successful photothermal efficiency enhancement of ultra-hard ceramics using laser machining.
Journal Article
Microstructural and Optical Properties of MgAl 2 O 4 Spinel: Effects of Mechanical Activation, Y 2 O 3 and Graphene Additions
2021
Magnesium aluminate and other alumina-based spinels attract attention due to their high hardness, high mechanical strength, and low dielectric constant. MgAl
O
was produced by a solid-state reaction between MgO and α-Al
O
powders. Mechanical activation for 30 min in a planetary ball mill was used to increase the reactivity of powders. Yttrium oxide and graphene were added to prevent abnormal grain growth during sintering. Samples were sintered by hot pressing under vacuum at 1450 °C. Phase composition and microstructure of sintered specimens were characterized by X-ray powder diffraction and scanning electron microscopy. Rietveld analysis revealed 100% pure spinel phase in all sintered specimens, and a decrease in crystallite size with the addition of yttria or graphene. Density measurements indicated that the mechanically activated specimen reached 99.6% relative density. Furthermore, the highest solar absorbance and highest spectral selectivity as a function of temperature were detected for the mechanically activated specimen with graphene addition. Mechanical activation is an efficient method to improve densification of MgAl
O
prepared from mixed oxide powders, while additives improve microstructure and optical properties.
Journal Article
Microstructural and Optical Properties of MgAl2O4 Spinel: Effects of Mechanical Activation, Y2O3 and Graphene Additions
2021
Magnesium aluminate and other alumina-based spinels attract attention due to their high hardness, high mechanical strength, and low dielectric constant. MgAl2O4 was produced by a solid-state reaction between MgO and α-Al2O3 powders. Mechanical activation for 30 min in a planetary ball mill was used to increase the reactivity of powders. Yttrium oxide and graphene were added to prevent abnormal grain growth during sintering. Samples were sintered by hot pressing under vacuum at 1450 °C. Phase composition and microstructure of sintered specimens were characterized by X-ray powder diffraction and scanning electron microscopy. Rietveld analysis revealed 100% pure spinel phase in all sintered specimens, and a decrease in crystallite size with the addition of yttria or graphene. Density measurements indicated that the mechanically activated specimen reached 99.6% relative density. Furthermore, the highest solar absorbance and highest spectral selectivity as a function of temperature were detected for the mechanically activated specimen with graphene addition. Mechanical activation is an efficient method to improve densification of MgAl2O4 prepared from mixed oxide powders, while additives improve microstructure and optical properties.
Journal Article
Light Readout of Small Scintillators Using SiPM Photosensors
by
Failla, Chiara Rita
,
Amaducci, Simone
,
Poma, Gaetano Elio
in
Algorithms
,
Analysis
,
Binomial distribution
2025
During the last two decades, relevant progress has been achieved in silicon photomultiplier (SiPM) technology, such that in an increasing number of radiation detection applications they are proposed as a viable alternative to traditional photomultiplier tubes (PMTs). Applications where the light from tiny scintillating crystals is detected by a single SiPM raise the question of the possible non-linearity of the response due to the saturation of the number of microcells involved. In other cases, where larger scintillators subtend arrays of SiPMs, the same question could hold. This work tries to disentangle such a question with a realistic numerical approach and a few tests showing that the possible saturation effects depend on the interplay between the features of the scintillator and of the SiPM (array). The quantitative results of this analysis can likely be used to better plan future radiation detection systems and to highlight their linearity boundaries.
Journal Article
Root proteomic and metabolic analyses reveal specific responses to drought stress in differently tolerant grapevine rootstocks
by
Scienza, Attilio
,
Espen, Luca
,
Prinsi, Bhakti
in
Adaptation
,
Agriculture
,
biochemical pathways
2018
Background
Roots play a central role in plant response to water stress (WS). They are involved in its perception and signalling to the leaf as well as in allowing the plant to adapt to maintaining an adequate water balance. Only a few studies have investigated the molecular/biochemical responses to WS in roots of perennial plants, such as grapevine. This study compares two grapevine rootstock genotypes (i.e. 101.14 and M4) with different tolerance to WS, evaluating the responses at proteomic and metabolite levels.
Results
WS induced changes in the abundance of several proteins in both genotypes (17 and 22% of the detected proteins in 101.14 and M4, respectively). The proteomic analysis revealed changes in many metabolic pathways that fitted well with the metabolite data. M4 showed metabolic responses which were potentially able to counteract the WS effects, such as the drop in cell turgor, increased oxidative stress and loss of cell structure integrity/functionality. However, in 101.14 it was evident that the roots were suffering more severely from these effects. We found that many proteins classified as active in energy metabolism, hormone metabolism, protein, secondary metabolism and stress functional classes showed particular differences between the two rootstocks.
Conclusion
The proteomic/metabolite comparative analysis carried out provides new information on the possible biochemical and molecular strategies adopted by grapevine roots to counteract WS. Although further work is needed to define in detail the role(s) of the proteins and metabolites that characterize WS response, this study, involving the M4 rootstock genotype, highlights that osmotic responses, modulations of C metabolism, mitochondrial functionality and some specific responses to stress occurring in the roots play a primary role in
Vitis
spp. tolerance to this type of abiotic stress.
Journal Article