Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
3
result(s) for
"Fairman, Joshua"
Sort by:
Plasticity of ether lipids promotes ferroptosis susceptibility and evasion
2020
Ferroptosis—an iron-dependent, non-apoptotic cell death process—is involved in various degenerative diseases and represents a targetable susceptibility in certain cancers
1
. The ferroptosis-susceptible cell state can either pre-exist in cells that arise from certain lineages or be acquired during cell-state transitions
2
–
5
. However, precisely how susceptibility to ferroptosis is dynamically regulated remains poorly understood. Here we use genome-wide CRISPR–Cas9 suppressor screens to identify the oxidative organelles peroxisomes as critical contributors to ferroptosis sensitivity in human renal and ovarian carcinoma cells. Using lipidomic profiling we show that peroxisomes contribute to ferroptosis by synthesizing polyunsaturated ether phospholipids (PUFA-ePLs), which act as substrates for lipid peroxidation that, in turn, results in the induction of ferroptosis. Carcinoma cells that are initially sensitive to ferroptosis can switch to a ferroptosis-resistant state in vivo in mice, which is associated with extensive downregulation of PUFA-ePLs. We further find that the pro-ferroptotic role of PUFA-ePLs can be extended beyond neoplastic cells to other cell types, including neurons and cardiomyocytes. Together, our work reveals roles for the peroxisome–ether-phospholipid axis in driving susceptibility to and evasion from ferroptosis, highlights PUFA-ePL as a distinct functional lipid class that is dynamically regulated during cell-state transitions, and suggests multiple regulatory nodes for therapeutic interventions in diseases that involve ferroptosis.
The cellular organelles peroxisomes contribute to the sensitivity of cells to ferroptosis by synthesizing polyunsaturated ether phospholipids, and changes in the abundances of these lipids are associated with altered sensitivity to ferroptosis during cell-state transitions.
Journal Article
Uncovering protein–protein interactions through a team-based undergraduate biochemistry course
by
Aliev, Sabina
,
Fagre, Christian R.
,
Parry, Robert C.
in
Biochemistry
,
Biochemistry - education
,
Biology
2017
How can we provide fertile ground for students to simultaneously explore a breadth of foundational knowledge, develop cross-disciplinary problem-solving skills, gain resiliency, and learn to work as a member of a team? One way is to integrate original research in the context of an undergraduate biochemistry course. In this Community Page, we discuss the development and execution of an interdisciplinary and cross-departmental undergraduate biochemistry laboratory course. We present a template for how a similar course can be replicated at other institutions and provide pedagogical and research results from a sample module in which we challenged our students to study the binding interface between 2 important biosynthetic proteins. Finally, we address the community and invite others to join us in making a larger impact on undergraduate education and the field of biochemistry by coordinating efforts to integrate research and teaching across campuses.
Journal Article
Lab-in-the-loop therapeutic antibody design with deep learning
by
Czubaty, Alicja
,
Martinkus, Karolis
,
Saremi, Saeed
in
Antibodies
,
Bioengineering
,
Deep learning
2025
Therapeutic antibody design is a complex multi-property optimization problem that traditionally relies on expensive search through sequence space. Here, we introduce \"Lab-in-the-loop,\" a paradigm shift for antibody design that orchestrates generative machine learning models, multi-task property predictors, active learning ranking and selection, and in vitro experimentation in a semi-autonomous, iterative optimization loop. By automating the design of antibody variants, property prediction, ranking and selection of designs to assay in the lab, and ingestion of in vitro data, we enable a holistic, end-to-end approach to antibody optimization. We apply lab-in-the-loop to four clinically relevant antigen targets: EGFR, IL-6, HER2, and OSM. Over 1,800 unique antibody variants are designed and tested, derived from lead molecule candidates obtained via animal immunization and state-of-the-art immune repertoire mining techniques. Four lead candidate and four design crystal structures are solved to reveal mechanistic insights into the effects of mutations. We perform four rounds of iterative optimization and report 3-100x better binding variants for every target and ten candidate lead molecules, with the best binders in a therapeutically relevant 100 pM range.Competing Interest StatementAll authors are or were employees of Genentech Inc. (a member of the Roche Group) or Roche, and may hold Roche stock or related interests.Footnotes* https://github.com/prescient-design* https://github.com/Genentech/beignet