Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
23 result(s) for "Faleye, Temitope O. C."
Sort by:
Wastewater-Based Epidemiology and Long-Read Sequencing to Identify Enterovirus Circulation in Three Municipalities in Maricopa County, Arizona, Southwest United States between June and October 2020
We used wastewater-based epidemiology and amplicon-based long-read high-throughput sequencing for surveillance of enteroviruses (EVs) in Maricopa County, Arizona, Southwest United States. We collected 48 samples from 13 sites in three municipalities between 18 June and 1 October 2020, and filtered (175 mL each; 0.45 µm pore size) and extracted RNA from the filter-trapped solids. The RNA was converted to cDNA and processed through two workflows (Sanger sequencing (SSW) and long-read Illumina sequencing (LRISW)) each including a nested polymerase chain reaction (nPCR) assay. We subjected the ~350 bp amplicon from SSW to Sanger sequencing and the ~1900–2400 bp amplicon from LRISW to Illumina sequencing. We identified EV contigs from 11 of the 13 sites and 41.67% (20/48) of screened samples. Using the LRISW, we detected nine EV genotypes from three species (Enterovirus A (CVA4, EV-A76, EV-A90), Enterovirus B (E14) and Enterovirus C (CVA1, CVA11, CVA13, CVA19 and CVA24)) with Enterovirus C representing approximately 90% of the variants. However, the SSW only detected the five Enterovirus C types. Similarity and phylogenetic analysis showed that multiple Enterovirus C lineages were circulating, co-infecting and recombining in the population during the season despite the SARS-CoV-2 pandemic and the non-pharmaceutical public health measures taken to curb transmission.
Ten Previously Unassigned Human Cosavirus Genotypes Detected in Feces of Children with Non-Polio Acute Flaccid Paralysis in Nigeria in 2020
Since its discovery via metagenomics in 2008, human cosavirus (HCoSV) has been detected in the cerebrospinal fluid (CSF) and feces of humans with meningitis, acute flaccid paralysis (AFP), and acute gastroenteritis. To date, 34 HCoSV genotypes have been documented by the Picornaviridae study group. However, the documented genetic diversity of HCoSV in Nigeria is limited. Here we describe the genetic diversity of HCoSV in Nigeria using a metagenomics approach. Archived and anonymized fecal specimens from children (under 15 years old) diagnosed with non-polio AFP from five states in Nigeria were analyzed. Virus-like particles were purified from 55 pools (made from 254 samples) using the NetoVIR protocol. Pools were subjected to nucleic acid extraction and metagenomic sequencing. Reads were trimmed and assembled, and contigs classified as HCoSV were subjected to phylogenetic, pairwise identity, recombination analysis, and, when necessary, immuno-informatics and capsid structure prediction. Fifteen pools yielded 23 genomes of HCoSV. Phylogenetic and pairwise identity analysis showed that all belonged to four species (eleven, three, three, and six members of Cosavirus asiani, Cosavirus bepakis, Cosavirus depakis, and Cosavirus eaustrali, respectively) and seventeen genotypes. Ten genomes belong to seven (HCoSV-A3/A10, A15, A17, A19, A24, D3, and E1) previously assigned genotypes, while the remaining thirteen genomes belonged to ten newly proposed genotypes across the four HCoSV species, based on the near-complete VP1 region (VP1*) of the cosavirus genome. Our analysis suggests the existence of at least seven and eight Cosavirus bepakis and Cosavirus eaustrali genotypes, respectively (including those described here). We report the first near-complete genomes of Cosavirus bepakis and Cosavirus depakis from Nigeria, which contributes to the increasing knowledge of the diversity of HCoSV, raising the number of tentative genotypes from 34 to over 40. Our findings suggest that the genetic diversity of HCoSV might be broader than is currently documented, highlighting the need for enhanced surveillance.
Exploring Canine Picornavirus Diversity in the USA Using Wastewater Surveillance: From High-Throughput Genomic Sequencing to Immuno-Informatics and Capsid Structure Modeling
The SARS-CoV-2 pandemic resulted in a scale-up of viral genomic surveillance globally. However, the wet lab constraints (economic, infrastructural, and personnel) of translating novel virus variant sequence information to meaningful immunological and structural insights that are valuable for the development of broadly acting countermeasures (especially for emerging and re-emerging viruses) remain a challenge in many resource-limited settings. Here, we describe a workflow that couples wastewater surveillance, high-throughput sequencing, phylogenetics, immuno-informatics, and virus capsid structure modeling for the genotype-to-serotype characterization of uncultivated picornavirus sequences identified in wastewater. Specifically, we analyzed canine picornaviruses (CanPVs), which are uncultivated and yet-to-be-assigned members of the family Picornaviridae that cause systemic infections in canines. We analyzed 118 archived (stored at −20 °C) wastewater (WW) samples representing a population of ~700,000 persons in southwest USA between October 2019 to March 2020 and October 2020 to March 2021. Samples were pooled into 12 two-liter volumes by month, partitioned (into filter-trapped solids [FTSs] and filtrates) using 450 nm membrane filters, and subsequently concentrated to 2 mL (1000×) using 10,000 Da MW cutoff centrifugal filters. The 24 concentrates were subjected to RNA extraction, CanPV complete capsid single-contig RT-PCR, Illumina sequencing, phylogenetics, immuno-informatics, and structure prediction. We detected CanPVs in 58.3% (14/24) of the samples generated 13,824,046 trimmed Illumina reads and 27 CanPV contigs. Phylogenetic and pairwise identity analyses showed eight CanPV genotypes (intragenotype divergence <14%) belonging to four clusters, with intracluster divergence of <20%. Similarity analysis, immuno-informatics, and virus protomer and capsid structure prediction suggested that the four clusters were likely distinct serological types, with predicted cluster-distinguishing B-cell epitopes clustered in the northern and southern rims of the canyon surrounding the 5-fold axis of symmetry. Our approach allows forgenotype-to-serotype characterization of uncultivated picornavirus sequences by coupling phylogenetics, immuno-informatics, and virus capsid structure prediction. This consequently bypasses a major wet lab-associated bottleneck, thereby allowing resource-limited settings to leapfrog from wastewater-sourced genomic data to valuable immunological insights necessary for the development of prophylaxis and other mitigation measures.
Use of hemagglutinin and neuraminidase amplicon-based high-throughput sequencing with variant analysis to detect co-infection and resolve identical consensus sequences of seasonal influenza in a university setting
Background Local transmission of seasonal influenza viruses (IVs) can be difficult to resolve. Here, we study if coupling high-throughput sequencing (HTS) of hemagglutinin (HA) and neuraminidase (NA) genes with variant analysis can resolve strains from local transmission that have identical consensus genome. We analyzed 24 samples collected over four days in January 2020 at a large university in the US. We amplified complete hemagglutinin (HA) and neuraminidase (NA) genomic segments followed by Illumina sequencing. We identified consensus complete HA and NA segments using BLASTn and performed variant analysis on strains whose HA and NA segments were 100% similar. Results Twelve of the 24 samples were PCR positive, and we detected complete HA and/or NA segments by de novo assembly in 83.33% (10/12) of them. Similarity and phylogenetic analysis showed that 70% (7/10) of the strains were distinct while the remaining 30% had identical consensus sequences. These three samples also had IAV and IBV co-infection. However, subsequent variant analysis showed that they had distinct variant profiles. While the IAV HA of one sample had no variant, another had a T663C mutation and another had both C1379T and C1589A. Conclusion In this study, we showed that HTS coupled with variant analysis of only HA and NA genes can help resolve variants that are closely related. We also provide evidence that during a short time period in the 2019–2020 season, co-infection of IAV and IBV occurred on the university campus and both 2020/2021 and 2021/2022 WHO recommended H1N1 vaccine strains were co-circulating.
Implementing Wastewater-Based Epidemiology for Long-Read Metagenomic Sequencing of Antimicrobial Resistance in Kampala, Uganda
Antimicrobial resistance (AMR) is an emerging global threat that is expanding in many areas of the world. Wastewater-based epidemiology (WBE) is uniquely suited for use in areas of the world where clinical surveillance is limited or logistically slow to identify emerging threats, such as in Sub-Saharan Africa (SSA). Wastewater was analyzed from three urban areas of Kampala, including a local HIV research clinic and two informal settlements. Wastewater extraction was performed using a low-cost, magnetic bead-based protocol that minimizes consumable plastic consumption followed by sequencing on the Oxford Nanopore Technology MinION platform. The majority of the analysis was performed using cloud-based services to identify AMR biomarkers and bacterial pathogens. Assemblies containing AMR pathogens were isolated from all locations. As one example, clinically relevant AMR biomarkers for multiple drug classes were found within Acinetobacter baumannii genomic fragments. This work presents a metagenomic WBE workflow that is compatible with areas of the world without robust water treatment infrastructure. This study was able to identify various bacterial pathogens and AMR biomarkers without shipping water samples internationally or relying on complex concentration methods. Due to the time-dependent nature of wastewater surveillance data, this work involved cross-training researchers in Uganda to collect and analyze wastewater for future efforts in public health development.
Detection of human, porcine and canine picornaviruses in municipal sewage sludge using pan-enterovirus amplicon-based long-read Illumina sequencing
We describe the successful detection of human, porcine and canine picornaviruses (CanPV) in sewage sludge (at each stage of treatment) from Louisville, Kentucky, USA, using Pan-enterovirus amplicon-based long-read Illumina sequencing. Based on publicly available sequence data in GenBank, this is the first detection of CanPV in the USA and the first detection globally using wastewater-based epidemiology. Our findings also suggest there might be clusters of endemic porcine enterovirus (which have been shown capable of causing systemic infection in porcine) circulation in the USA that have not been sampled for around two decades. Our findings highlight the value of WBE coupled with amplicon based long-read Illumina sequencing for virus surveillance and demonstrates this approach can provide an avenue that supports a \"One Health\" model to virus surveillance. Finally, we describe a new CanPV assay targeting the capsid protein gene region that can be used globally, especially in resource limited settings for its detection and molecular epidemiology.
Canine Parvovirus and Vaccine-Origin Feline Panleukopenia Virus in Wastewater, Arizona, USA: July 2022–June 2023
Canine parvovirus (CPV) is a virus of veterinary health significance and a member of the Parvoviridae family. Despite its clinical significance and global distribution, surveillance is often limited to cases serious enough to result in veterinary visit and/or hospitalization, thereby limiting our understanding of its evolution and diversity. In this study, we coupled wastewater surveillance (WWS), long-range polymerase chain reaction (PCR) and long-read sequencing and demonstrate the utility of this approach for community-level monitoring of parvovirus diversity. We screened archived viral concentrates from wastewater (WW) collected monthly from July 2022 to June 2023 as part of a previous virus surveillance study from a population of ~500,000 people in Maricopa County, Arizona, USA. Using long-range PCR, the coding-complete sequences (~4.5 kb) were amplified as single contigs and sequenced on a long-read sequencer (MinION). Reads were trimmed, assembled, and contigs subjected to a bioinformatics workflow that includes phylogenetics, immuno-informatics and protein structure modelling. The ~4.5 kb amplicons were amplified from all the samples and sequenced. Twelve contigs (length: 4555 nt to 4675 nt: GC%: 35% to 36%) were assembled from 86,858 trimmed and size-selected reads (length 4400 nt–4900 nt) and all typed as parvoviruses. Overall, there were 11 CPV variants (2a, 2b and 2c) and 1 feline panleukopenia virus (FPV) variant. The FPV was 100% similar in the VP2 genomic region to the 1964 Johnson snow leopard strain present in the Felocell vaccine, suggesting recent shedding post-vaccination. For the CPVs, our analysis showed multiple amino acid substitutions in the VP2 and NS1 proteins, suggestive of host immune pressure and viral adaptation, respectively. The CPV variants clustered predominantly with North and South American variants, suggesting transboundary viral movement and multiple CPV-2c transmission chains seem evident. To the best of our knowledge, we here document the first detection of vaccine-origin FPV in WW. We show the presence of CPV-2a, 2b and 2c in the population sampled and provide evidence that suggests transmission of CPVs across the Americas. Our results also show that WWS coupled with long-range PCR and long-read sequencing is a feasible population-level complement to clinical case surveillance that also facilitates detection of vaccine-origin virus variants. The model we demonstrate here for tracking parvoviruses can also be easily extended to other DNA viruses of human and veterinary health significance.
Metagenomic Detection and Genetic Characterization of Human Sapoviruses among Children with Acute Flaccid Paralysis in Nigeria
Using a metagenomic sequencing approach on stool samples from children with Acute Flaccid Paralysis (AFP), we describe the genetic diversity of Sapoviruses (SaVs) in children in Nigeria. We identified six complete genome sequences and two partial genome sequences. Several SaV genogroups and genotypes were detected, including GII (GII.4 and GII.8), GIV (GIV.1), and GI (GI.2 and GI.7). To our knowledge, this is the first description of SaV infections and complete genomes from Nigeria. Pairwise identity and phylogenetic analysis showed that the Nigerian SaVs were related to previously documented gastroenteritis outbreaks with associated strains from China and Japan. Minor variations in the functional motifs of the nonstructural proteins NS3 and NS5 were seen in the Nigerian strains. To adequately understand the effect of such amino acid changes, a better understanding of the biological function of these proteins is vital. The identification of distinct SaVs reinforces the need for robust surveillance in acute gastroenteritis (AGE) and non-AGE cohorts to better understand SaVs genotype diversity, evolution, and its role in disease burden in Nigeria. Future studies in different populations are, therefore, recommended.
Adenovirus 41 diversity in Arizona (USA) using wastewater-based epidemiology, long-range PCR, and pathogen sequencing between October 2019 and March 2020
By coupling long-range polymerase chain reaction, wastewater-based epidemiology, and pathogen sequencing, we show that adenovirus type 41 hexon-sequence lineages, described in children with hepatitis of unknown origin in the United States in 2021, were already circulating within the country in 2019. We also observed other lineages in the wastewater, whose complete genomes have yet to be documented from clinical samples.
Antiviral potentials of Lactobacillus plantarum, Lactobacillus amylovorus, and Enterococcus hirae against selected Enterovirus
Enteroviruses have been associated with a host of clinical presentations including acute flaccid paralysis (AFP). The site of primary replication for most enteroviruses is the gastrointestinal tract (GIT) and lactic acid bacteria (LAB) may confer protection in the GIT against them. This study therefore investigates the antiviral potential of some selected lactic acid bacteria against enterovirus isolates recovered from AFP cases. The antiviral activities of Lactobacillus plantarum, Lactobacillus amylovorus, and Enterococcus hirae in broth culture, their cell-free supernatant (CFS), and bacterial cell pellets were assayed against Echovirus 7 (E7), E13, and E19 in a pre- and post-treatment approach using cytopathic effect (CPE) and cell viability (MTT) assay. The tested Lactobacillus plantarum, Lactobacillus amylovorus, and Enterococcus hirae strains have good antiviral properties against E7 and E19 but not against E13. Lactobacillus amylovorus AA099 shows the highest activity against E19. The pre-treatment approach displays better antiviral activities compared to post-treatment approach. The LAB in broth suspension have better antiviral activities than their corresponding CFS and bacterial pellet. Lactic acid bacteria used in this study have the potential as antiviral agents.