Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
40 result(s) for "Fan, Chia-Kwung"
Sort by:
Human toxocariasis
Parasitic nematodes of the genus Toxocara are socioeconomically important zoonotic pathogens. These parasites are usually directly transmitted to the human host via the faecal–oral route and can cause toxocariasis and associated complications, including allergic and neurological disorders. Although tens of millions of people are estimated to be exposed to or infected with Toxocara spp, global epidemiological information on the relationship between seropositivity and toxocariasis is limited. Recent findings suggest that the effect of toxocariasis on human health is increasing in some countries. Here we review the salient background on Toxocara and biology, summarise key aspects of the pathogenesis, diagnosis, and treatment of toxocariasis, describe what is known about its geographic distribution and prevalence, and make some recommendations for future research towards the prevention and control of this important disease.
Hidden diversity of the most basal tapeworms (Cestoda, Gyrocotylidea), the enigmatic parasites of holocephalans (Chimaeriformes)
Gyrocotylideans are evolutionary ancient parasitic flatworms, and like their hosts—a relict group of holocephalan fishes (Chimaeriformes)—they are considered to be “living fossils” of a vanished past. However, the species diversity, host associations and biogeography of these most basal tapeworms are poorly known. Herein, we provide evidence of a conspicuous contrast between the genetic and morphological data based on an examination of newly collected and properly processed Gyrocotyle specimens (hologenophores) isolated from holocephalans off Taiwan and Argentina. Our molecular data, inferred from three genes ( COI, 28S rRNA, 18S rRNA ), showed unexpected genetic interrelationships among isolates of the genus Gyrocotyle , because each of the four genotypes from Taiwan clustered with isolates of distinct gyrocotylideans from the North Atlantic. Three genotypes of Gyrocotyle from Taiwan were morphologically almost indistinguishable from each other but represented distinct genetic lineages; a single specimen of Gyrocotyle sp. genotype 4 exhibited a clear genetic and morphological distinctness, though its formal description as a new species would be premature. Additionally, specimens of Gyrocotyle rugosa Diesing, 1850, from the type host Callorhinchus callorynchus from Argentina, provided the first genetic data on the type species of the genus and enabled us to characterise it, which is necessary for future taxonomic studies. The finding of some specimens of Gyrocotyle sp. genotype 3 in Chimaera phantasma , and another one in C. cf. argiloba , together with the putative conspecificity of an unidentified gyrocotylidean from Callorhinchus milii off Australia and G. rugosa from C. callorynchus off Argentina, represent evidence that one gyrocotylidean species may parasitise more than one holocephalan host species. Existing taxonomic problems and conflicts between morphological and molecular data on species of Gyrocotyle can only be resolved if hologenophores from type hosts and localities of nominal taxa are properly characterised genetically and morphologically.
Antimicrobial Peptide LCN2 Inhibited Uropathogenic Escherichia coli Infection in Bladder Cells in a High-Glucose Environment through JAK/STAT Signaling Pathway
JAK/STAT plays a key role in regulating uropathogenic Escherichia coli (UPEC) infection in urothelial cells, probably via antimicrobial peptide (AMP) production, in diabetic patients with urinary tract infections. Whether multiple pathways regulate AMPs, especially lipid-carrying protein-2 (LCN2), to achieve a vital effect is unknown. We investigated the effects of an LCN2 pretreatment on the regulation of the JAK/STAT pathway in a high-glucose environment using a bladder cell model with GFP-UPEC and phycoerythrin-labeled TLR-4, STAT1, and STAT3. Pretreatment with 5 or 25 μg/mL LCN2 for 24 h dose-dependently suppressed UPEC infections in bladder cells. TLR-4, STAT1, and STAT3 expression were dose-dependently downregulated after LCN2 pretreatment. The LCN2-mediated alleviation of UPEC infection in a high-glucose environment downregulated TLR-4 and the JAK/STAT transduction pathway and decreased the UPEC-induced secretion of exogenous inflammatory interleukin (IL)-6 and IL-8. Our study provides evidence that LCN2 can alleviate UPEC infection in bladder epithelial cells by decreasing JAK/STAT pathway activation in a high-glucose environment. LCN2 dose-dependently inhibits UPEC infection via TLR-4 expression and JAK/STAT pathway modulation. These findings may provide a rationale for targeting LCN2/TLR-4/JAK/STAT regulation in bacterial cystitis treatment. Further studies should explore specific mechanisms by which the LCN2, TLR-4, and JAK/STAT pathways participate in UPEC-induced inflammation to facilitate the development of effective therapies for cystitis.
Performance validation of deep-learning-based approach in stool examination
Background Human intestinal parasitic infections (IPI) pose a significant global health issue caused by parasitic helminths and protozoa, affecting around 3.5 billion people worldwide, with more than 200,000 deaths annually. Despite advancements in molecular methods with higher sensitivity and specificity, the Kato-Katz or formalin-ethyl acetate centrifugation technique (FECT) remains the gold standard and a routine diagnostic procedure suitable for its simplicity and cost-effectiveness. However, these techniques have limitations that must be addressed. Thus, this study evaluated the performance of a deep-learning-based approach for intestinal parasite identification and compared it with that of human experts. Methods Human experts performed FECT and Merthiolate-iodine-formalin (MIF) techniques to serve as ground truth and reference for parasite species. Subsequently, a modified direct smear was conducted to gather images for the training (80%) and testing (20%) datasets. State-of-the-art models, including YOLOv4-tiny, YOLOv7-tiny, YOLOv8-m, ResNet-50, and DINOv2 (base, small, and large), were employed and were operated using in-house CIRA CORE platform. Overall performance was evaluated using confusion matrices, the metrics of which were calculated on the basis of the one-versus-rest and micro-averaging approaches. Moreover, the receiver operating characteristic (ROC) and precision-recall (PR) curves were determined for visual comparison. Lastly, Cohen’s Kappa and Bland–Altman analyses were used to statistically measure the significant differences and visualize the association levels between the human experts and the deep learning models’ classification performance in intestinal parasite identification. Results Findings demonstrated the potential of a deep-learning-based approach, particularly of models DINOv2-large (accuracy: 98.93%; precision: 84.52%; sensitivity: 78.00%; specificity: 99.57%; F1 score: 81.13%; AUROC: 0.97) and YOLOv8-m (accuracy: 97.59%; precision: 62.02%; sensitivity: 46.78%; specificity: 99.13%; F1 score: 53.33%; AUROC: 0.755; AUPR: 0.556) for their high metric values in intestinal parasite identification. Class-wise prediction showed high precision, sensitivity, and F1 scores for helminthic eggs and larvae due to more distinct morphology. Moreover, all models obtained a > 0.90 k score, which indicates a strong level of agreement compared with the medical technologists. The Bland–Altman analysis also presented the best agreement between FECT performed by medical technologist A and YOLOv4-tiny, while the MIF technique performed by medical technologist B and DINOv2-small demonstrated the best bias-free agreement, with mean differences of 0.0199 and −0.0080, and standard deviation differences of 0.6012 and 0.5588, respectively. Conclusions The results highlight the potential of integrating a deep-learning-based approach into parasite identification. The models showcased superiority in automated detection, suggesting a significant leap toward improving diagnostic procedures for IPI. This hybridization could enhance early detection and diagnosis, facilitating timely and targeted interventions to reduce the burden of IPI through more effective management and prevention strategies. Graphical Abstract
Emerging and Reemerging Parasitic Diseases in Taiwan: A Retrospective Study of Clinical Case Reports in 2001~2018
Emerging and re-emerging parasitic diseases can cause significant economic burdens at national and global levels. However, governments often underestimate or ignore these diseases, especially in developed countries. This retrospective, case-oriented study analyzed parasitic diseases reported in Taiwan between 2001 and 2018. One hundred and thirty-two eligible clinical profiles of Taiwanese patients obtained from the NCBI, Scopus, Google Scholar, and Web of Science databases and local journals according to age, sex, source of infection, symptoms, risk factors, and geographical regions were analyzed. The analysis results showed that the number/frequency of cases caused by nematodes (46.97%) or protozoa (37.88%) was significantly higher than that of trematodes (9.85%) or cestodes (5.30%) (p < 0.0001). Northern Taiwan (46.97%) had a significantly higher rate than Southern Taiwan (33.33%), Central Taiwan (8.33%), and Eastern Taiwan (5.30%) (p < 0.05). The 15–65 age group (68.94%) had a significantly higher rate than the 65–90 age group (22.73%) and the 0–15 age group (8.33%) (p < 0.0001). Males (70.46%) had a significantly higher number/frequency of cases than females (29.54%) (p < 0.0001). People who acquired the infection through the food/soil route (32.58%) or who had a low immune status (32.58%) had a higher rate than travel-related infections (15.15%) (p < 0.001). The present study showed that emerging/reemerging parasitic infections continue to be of great concern to the lives and health of Taiwanese citizens and, if ignored, will threaten the health of the Taiwanese people; therefore, the delineation of preventive measures by health authorities is urgently warranted.
RNase 7 Inhibits Uropathogenic Escherichia coli-Induced Inflammation in Bladder Cells under a High-Glucose Environment by Regulating the JAK/STAT Signaling Pathway
Antimicrobial peptides (AMPs), which are natural antibiotics, protect against pathogens invading the urinary tract. RNase 7 with antimicrobial properties has rapid and powerful suppressive effects against Gram-positive and Gram-negative bacterial infections. However, its detailed antibacterial mechanisms have not been fully determined. Here, we investigate whether RNase 7 had an impact on bladder cells under uropathogenic Escherichia coli (UPEC) infection in a high-glucose environment using in vitro GFP-UPEC-infected bladder cell and PE-labeled TLR4, STAT1, and STAT3 models. We provide evidence of the suppressive effects of RNase 7 on UPEC infection and UPEC-induced inflammatory responses by regulating the JAK/STAT signaling pathway using JAK inhibitor and STAT inhibitor blocking experiments. Pretreatment with different concentrations of RNase 7 for 24 h concentration-dependently suppressed UPEC invasion in bladder cells (5 μg/mL reducing 45%; 25 μg/mL reducing 60%). The expressions of TLR4, STAT1, and STAT3 were also downregulated in a concentration-dependent manner after RNase 7 pretreatment (5 μg/mL reducing 35%, 54% and 35%; 25 μg/mL reducing 60%, 75% and 64%, respectively). RNase 7-induced decrease in UPEC infection in a high-glucose environment not only downregulated the expression of TLR4 protein and the JAK/STAT signaling pathway but also decreased UPEC-induced secretion of exogenous inflammatory IL-6 and IL-8 cytokines, although IL-8 levels increased in the 25 μg/mL RNase 7-treated group. Thus, inhibition of STAT affected pSTAT1, pSTAT3, and TLR4 expression, as well as proinflammatory IL-6 and IFN-γ expression. Notably, blocking JAK resulted in the rebound expression of related proteins, especially pSTAT1, TLR4, and IL-6. The present study showed the suppressive effects of RNase 7 on UPEC infection and induced inflammation in bladder epithelial cells in a high-glucose environment. RNase 7 may be an anti-inflammatory and anti-infective mediator in bladder cells by downregulating the JAK/STAT signaling pathway and may be beneficial in treating cystitis in DM patients. These results will help clarify the correlation between AMP production and UTI, identify the relationship between urinary tract infection and diabetes in UTI patients, and develop novel diagnostics or possible treatments targeting RNase 7.
Osthole treatment ameliorates Th2-mediated allergic asthma and exerts immunomodulatory effects on dendritic cell maturation and function
Osthole, an active component of Chinese herbal medicines, reportedly possesses various pharmacological properties and has potential therapeutic applications. This study explored the anti-allergic effects of osthole in asthmatic mice and investigated the immunomodulatory actions of osthole on dendritic cells (DCs) and T cells. Herein, we show that oral administration of osthole to BALB/c mice after ovalbumin (OVA) sensitization ameliorated all of the cardinal features of T helper 2 (Th2)-mediated allergic asthma; namely, the production of OVA-specific immunoglobulin E, airway hyperresponsiveness, airway inflammation and the production of Th2-type cytokines including interleukin (IL)-4, IL-5 and IL-13. Surprisingly, IL-10 production was not inhibited and was even enhanced by osthole treatment. We observed a significant increase in the percentages of IL-10-producing DCs and forkhead box P3-positive regulatory T (Treg) cells in osthole-treated asthmatic mice. Additionally, in vitro analyses revealed that osthole-treated bone-marrow-derived DCs had a partial maturation phenotype, secreting large amounts of IL-10 and low levels of proinflammatory cytokines, such as IL-12, IL-6 and tumor necrosis factor-α, and displaying reduced levels of MHC class II surface molecules. These DCs displayed immunosuppressive capacity by directly inhibiting effector T-cell responses or inducing Treg cells. In addition, osthole directly inhibited the activated CD4 + T-cell proliferation and Th1/Th2-type cytokine production in this system. Collectively, these results suggest that DCs and T cells are potential target cells responsible for the action of osthole against allergic asthma.
Testosterone suppresses uropathogenic Escherichia coli invasion and colonization within prostate cells and inhibits inflammatory responses through JAK/STAT-1 signaling pathway
Prostatitis is a common condition in adult men of all ages. Uropathogenic Escherichia coli (UPEC) are most frequent pathogen involved in bacterial prostatitis by refluxing the infected urine into prostatic ducts and resulting in an ascending urethral infection. However, the study about the mechanisms of UPEC to invade, replicate and persist in normal prostate epithelial cell is only few. Given the fact that UPEC is pathogen most frequently involved in prostatitis and that testosterone has been demonstrated to attenuate prostate inflammation caused by other etiologies. In this study we investigated whether the testosterone reduces the prostatitis and related mechanism by regulating IFN-γ/STAT1 signaling pathway. In the current study aimed to clarify whether testosterone influences the process of UPEC-induced prostate inflammation and invasion into the prostate epithelial cells. In addition, we set up a normal prostate cell model for UPEC infection to evaluate the ability to invade the urothelial cells as well as the colonization of intercellular bacterial communities in vitro. By using the model, we examine the effects of testosterone to suppress effectively the invasion and survival of UPEC in the prostate cells, and inhibit LPS-induced inflammatory responses through the JAK/STAT1 pathway have also been indicated. Our results demonstrated testosterone not only suppressed the invasion and colonization of UPEC, but also inhibited the expression of pro-inflammatory IL-1β, IL-6 and IL-8 cytokines expression induced by UPEC in a dose-dependent manner. We found the effective dose of testosterone to suppress UPEC infect prostate cells may be appropriate under 40μg/ml. Our data also revealed 20μg/ml testosterone treated PZ-HPV-7 cells significantly suppressed the LPS-induced JAK/STAT1 pathway and inflammatory responses, and reached to maximal effects at 40μg/ml treatment. These results indicate that testosterone plays an anti-inflammatory role in LPS-induced prostate cell inflammation by down-regulating JAK/STAT1 signaling pathway. Interestingly, the JAK inhibitor and testosterone for 24hr pretreatment rather markedly induced the colonization of UPEC in the PZ-HPV-7 cells. Based on the above data, the suppression of UPEC colonization in the prostate cells by testosterone seems to be unrelated with JAK/STAT signaling pathway, whereas the JAK may involve into the UPEC infection. Summing up these data, our findings have demonstrated the suppressive effects of testosterone on the invasion and survival of UPEC and induced inflammation in prostate epithelial cells. These findings indicate the action mechanism of testosterone as an anti-inflammatory mediator in the prostate cells is regulated through JAK/STAT1 signaling pathway, may be beneficial in treating prostate inflammation. Altogether, this study has provided the possibility that using testosterone in the prevention and clinical treatment of prostatitis is a new direction.
Case report of an unusual hepatic abscess caused by Actinomyces odontolyticus in a patient with human immunodeficiency virus infection
Background Actinomyces odontolyticus is not commonly recognized as a causative microbe of liver abscess. The detection and identification of A. odontolyticus in laboratories and its recognition as a pathogen in clinical settings can be challenging. However, in the past decades, knowledge on the clinical relevance of A. odontolyticus is gradually increasing. A. odontolyticus is the dominant oropharyngeal flora observed during infancy [Li et al. in Biomed Res Int 2018:3820215, 2018]. Herein we report a case of severe infection caused by A. odontolyticus in an immunocompromised patient with disruption of the gastrointestinal (GI) mucosa. Case presentation We present a unique case of a patient with human immunodeficiency virus infection who was admitted due to liver abscess and was subsequently diagnosed as having coinfection of A. odontolyticus , Streptococcus constellatus , and Candida albicans during the hospital course. The empirical antibiotics metronidazole and ceftriaxone were replaced with the intravenous administration of fluconazole and ampicillin. However, the patient’s condition deteriorated, and he died 3 weeks later. Conclusion This report is one of the first to highlight GI tract perforation and its clinical relevance with A. odontolyticus infection. A. odontolyticus infection should be diagnosed early in high-risk patients, and increased attention should be paid to commensal flora infection in immunocompromised individuals.
Enterobius vermicularis infection: prevalence and risk factors among preschool children in kindergarten in the capital area, Republic of the Marshall Islands
Background Enterobius vermicularis (pinworm) is one of the most common human parasitic helminths, and children are the most susceptible group. Some behavioral and environmental factors may facilitate pinworm infection. In the Republic of the Marshall Islands (RMI), the status of pinworm infections among children remains unknown. Methods In Majuro City, there are 14 kindergartens with a total of 635 preschool children (PSC) whose age range of 5~6 years. The present investigation attempted to determine the pinworm prevalence and associated risk factors as well as investigate whether eggs contaminated the clothes of PSC or the ground and tables in classrooms of 14 kindergartens. Informed consent form and a self-administered questionnaire were given to parents prior to pinworm screening. Perianal specimens were collected by an adhesive scotch tape method, and clothing of belly and hip sites and the ground and tables of the classrooms were inspected using a cellophane tape method to detect any eggs contamination. Results In total, 392 PSC (5.28 ± 0.56 yrs. old) participated in this project. The overall prevalence of pinworm infection was 22.4% (88/392). Boys (24.5%) had higher prevalence than girls (20.31%) ( p  = 0.32). PSC aged > 5 years (32.77%) showed a significantly higher prevalence than those aged ≤5 years (17.95%) ( p  = 0.01). A univariate analysis indicated that PSC who lived in urban areas (22.95%) had a higher prevalence than those who lived in rural areas (20.69%) ( p  = 0.69). The employment status of the parents showed no association with the pinworm infection rate ( p  > 0.05). A logistic regression analysis indicated that “having an older sister” produced a higher risk of acquiring pinworm infection for PSC compared to those who did not have an older sister (OR = 2.02; 95%CI = 1.05~3.88; p  = 0.04). No significant association between various other risk factors and pinworm infection was found ( p  > 0.05). Also, no eggs contamination was found on the clothes of the belly and hip sites or on the ground and tables in the 14 kindergartens. Conclusions Mass screening and treatment of infected PSC are important measures in pinworm control in the RMI.