Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
482 result(s) for "Fan, Liming"
Sort by:
Heterometallic ZnHoMOF as a Dual-Responsive Luminescence Sensor for Efficient Detection of Hippuric Acid Biomarker and Nitrofuran Antibiotics
Developing efficient and sensitive MOF-based luminescence sensors for bioactive molecule detection is of great significance and remains a challenge. Benefiting from favorable chemical and thermal stability, as well as excellent luminescence performance, a porous Zn(II)Ho(III) heterometallic–organic framework (ZnHoMOF) was selected here as a bifunctional luminescence sensor for the early diagnosis of a toluene exposure biomarker of hippuric acid (HA) through “turn-on” luminescence enhancing response and the daily monitoring of NFT/NFZ antibiotics through “turn-off” quenching effects in aqueous media with high sensitivity, acceptable selectivity, good anti-interference, exceptional recyclability performance, and low detection limits (LODs) of 0.7 ppm for HA, 0.04 ppm for NFT, and 0.05 ppm for NFZ. Moreover, the developed sensor was employed to quantify HA in diluted urine samples and NFT/NFZ in natural river water with satisfactory results. In addition, the sensing mechanisms of ZnHoMOF as a dual-response chemosensor in efficient detection of HA and NFT/NFZ antibiotics were conducted from the view of photo-induced electron transfer (PET), as well as inner filter effects (IFEs), with the help of time-dependent density functional theory (TD-DFT) and spectral overlap experiments.
Repeated anodal high-definition transcranial direct current stimulation over the left dorsolateral prefrontal cortex in mild cognitive impairment patients increased regional homogeneity in multiple brain regions
Transcranial direct current stimulation (tDCS) can improve cognitive function. However, it is not clear how high-definition tDCS (HD-tDCS) regulates the cognitive function and its neural mechanism, especially in individuals with mild cognitive impairment (MCI). This study aimed to examine whether HD-tDCS can modulate cognitive function in individuals with MCI and to determine whether the potential variety is related to spontaneous brain activity changes recorded by resting-state functional magnetic resonance imaging (rs-fMRI). Forty-three individuals with MCI were randomly assigned to receive either 10 HD-tDCS sessions or 10 sham sessions to the left dorsolateral prefrontal cortex (L-DLPFC). The fractional amplitude of low-frequency fluctuation (fALFF) and the regional homogeneity (ReHo) was computed using rs-fMRI data from all participants. The results showed that the fALFF and ReHo values changed in multiple areas following HD-tDCS. Brain regions with significant decreases in fALFF values include the Insula R, Precuneus R, Thalamus L, and Parietal Sup R, while the Temporal Inf R, Fusiform L, Occipital Sup L, Calcarine R, and Angular R showed significantly increased in their fALFF values. The brain regions with significant increases in ReHo values include the Temporal Inf R, Putamen L, Frontal Mid L, Precentral R, Frontal Sup Medial L, Frontal Sup R, and Precentral L. We found that HD-tDCS can alter the intensity and synchrony of brain activity, and our results indicate that fALFF and ReHo analysis are sensitive indicators for the detection of HD-tDCS during spontaneous brain activity. Interestingly, HD-tDCS increases the ReHo values of multiple brain regions, which may be related to the underlying mechanism of its clinical effects, these may also be related to a potential compensation mechanism involving the mobilization of more regions to complete a function following a functional decline.
SonarNet: Global Feature-Based Hybrid Attention Network for Side-Scan Sonar Image Segmentation
With the rapid advancement of deep learning techniques, side-scan sonar image segmentation has become a crucial task in underwater scene understanding. However, the complex and variable underwater environment poses significant challenges for salient object detection, with traditional deep learning approaches often suffering from inadequate feature representation and the loss of global context during downsampling, thus compromising the segmentation accuracy of fine structures. To address these issues, we propose SonarNet, a Global Feature-Based Hybrid Attention Network specifically designed for side-scan sonar image segmentation. SonarNet features a dual-encoder architecture that leverages residual blocks and a self-attention mechanism to simultaneously capture both global structural and local contextual information. In addition, an adaptive hybrid attention module is introduced to effectively integrate channel and spatial features, while a global enhancement block fuses multi-scale global and spatial representations from the dual encoders, mitigating information loss throughout the network. Comprehensive experiments on a dedicated underwater sonar dataset demonstrate that SonarNet outperforms ten state-of-the-art saliency detection methods, achieving a mean absolute error as low as 2.35%. These results highlight the superior performance of SonarNet in challenging sonar image segmentation tasks.
Nickel@Siloxene catalytic nanosheets for high-performance CO2 methanation
Two-dimensional (2D) materials are of considerable interest for catalyzing the heterogeneous conversion of CO 2 to synthetic fuels. In this regard, 2D siloxene nanosheets, have escaped thorough exploration, despite being composed of earth-abundant elements. Herein we demonstrate the remarkable catalytic activity, selectivity, and stability of a nickel@siloxene nanocomposite; it is found that this promising catalytic performance is highly sensitive to the location of the nickel component, being on either the interior or the exterior of adjacent siloxene nanosheets. Control over the location of nickel is achieved by employing the terminal groups of siloxene and varying the solvent used during its nucleation and growth, which ultimately determines the distinct reaction intermediates and pathways for the catalytic CO 2 methanation. Significantly, a CO 2 methanation rate of 100 mmol g Ni −1  h −1 is achieved with over 90% selectivity when nickel resides specifically between the sheets of siloxene. There is a strong push to develop new catalysts and supports to convert low-value CO 2 into high-value CH 4 . Here, authors found that the internal or external confinement of Ni on multi-layered siloxene supports determined the reaction pathway, activity, selectivity, and stability in CO 2 methanation.
Autotoxic Ginsenosides in the Rhizosphere Contribute to the Replant Failure of Panax notoginseng
Sanqi ginseng (Panax notoginseng) growth is often hampered by replant failure. In this study, we aimed to examine the role of autotoxicity in Sanqi replant failures and assess the role of ginsenosides in autotoxicity. The autotoxicities were measured using seedling emergence bioassays and root cell vigor staining. The ginsenosides in the roots, soils, and root exudates were identified with HPLC-MS. The seedling emergence and survival rate decreased significantly with the continuous number of planting years from one to three years. The root exudates, root extracts, and extracts from consecutively cultivated soils also showed significant autotoxicity against seedling emergence and growth. Ginsenosides, including R1, Rg1, Re, Rb1, Rb3, Rg2, and Rd, were identified in the roots and consecutively cultivated soil. The ginsenosides, Rg1, Re, Rg2, and Rd, were identified in the root exudates. Furthermore, the ginsenosides, R1, Rg1, Re, Rg2, and Rd, caused autotoxicity against seedling emergence and growth and root cell vigor at a concentration of 1.0 µg/mL. Our results demonstrated that autotoxicity results in replant failure of Sanqi ginseng. While Sanqi ginseng consecutively cultivated, some ginsenosides can accumulate in rhizosphere soils through root exudates or root decomposition, which impedes seedling emergence and growth.
Brain dynamics alterations induced by partial sleep deprivation: An energy landscape study
•Energy landscape analyses showed that young participants after PSD exhibited more frequent switching between major states compared to full sleep.•Restricted brain dynamics after PSD in young adults were associated with decreased emotional performance, and these results may be attributed to aberrantly functional segregation between brain networks.•Dynamics activity patterns were less affects over time in older adults after PSD, and coordination between functionally different brain systems were also unaffected.•Similarities in dynamic changes exist between PSD in young adults and healthy aging. Partial sleep deprivation (PSD) alters neural activity of intrinsic brain networks involved in cognitive functions. However, the age-related time-varying properties of large-scale brain functional networks after PSD remain unknown. Our study applied energy landscape analysis to resting-state functional magnetic resonance imaging data to characterize the dominant brain activity patterns in 36 healthy young (19 females, 23.53 ± 2.36 years) and 33 healthy older (18 females, 68.81 ± 2.41 years) adults after full sleep (FS) and PSD. Dynamic properties of these patterns, including appearance probability, duration and transitions, were then calculated. Finally, a 105 steps numerical simulation was performed on each energy landscape. We found that the energy landscapes of the younger and older groups had similar hierarchical structures, including two major states and two minor states. The two major states showed complementary spontaneous activation patterns. But the PSD has altered the temporal evolution of these major brain states in younger participants, manifested by significantly higher appearance frequency of the major states and the direct transitions between major states than FS. These changes were not significant in older participants. Additionally, the weaker functional segregation between two modules assigned by two complementary major states was found during PSD than FS in young group. We further demonstrated that such abnormal brain network functional coordination was associated with the atypical brain dynamics and behaviors. These findings suggested a low-dimensional and restricted dynamic landscape of brain activity in young adults after PSD and provided new insight into understand the neural effects of PSD.
Network pharmacology of iridoid glycosides from Eucommia ulmoides Oliver against osteoporosis
Eucommia ulmoides Oliver is one of the commonly used traditional Chinese medicines for the treatment of osteoporosis, and iridoid glycosides are considered to be its active ingredients against osteoporosis. This study aims to clarify the chemical components and molecular mechanism of iridoid glycosides of Eucommia ulmoides Oliver in the treatment of osteoporosis by integrating network pharmacology and molecular simulations. The active iridoid glycosides and their potential targets were retrieved from text mining as well as Swiss Target Prediction, TargetNet database, and STITCH databases. At the same time, DisGeNET, GeneCards, and Therapeutic Target Database were used to search for the targets associated with osteoporosis. A protein–protein interaction network was built to analyze the interactions between targets. Then, DAVID bioinformatics resources and R 3.6.3 project were used to carry out Gene Ontology enrichment analysis and Kyoto Encyclopedia of Genes and Genomes pathway analysis. Moreover, interactions between active compounds and potential targets were investigated through molecular docking, molecular dynamic simulation, and binding free energy analysis. The results showed that a total of 12 iridoid glycosides were identified as the active iridoid glycosides of Eucommia ulmoides Oliver in the treatment of osteoporosis. Among them, aucubin, reptoside, geniposide and ajugoside were the core compounds. The enrichment analysis suggested iridoid glycosides of Eucommia ulmoides Oliver prevented osteoporosis mainly through PI3K-Akt signaling pathway, MAPK signaling pathway and Estrogen signaling pathway. Molecular docking results indicated that the 12 iridoid glycosides had good binding ability with 25 hub target proteins, which played a critical role in the treatment of osteoporosis. Molecular dynamic and molecular mechanics Poisson–Boltzmann surface area results revealed these compounds showed stable binding to the active sites of the target proteins during the simulations. In conclusion, our research demonstrated that iridoid glycosides of Eucommia ulmoides Oliver in the treatment of osteoporosis involved a multi-component, multi-target and multi-pathway mechanism, which provided new suggestions and theoretical support for treating osteoporosis.
Antimicrobial peptides from marine animals: Sources, structures, mechanisms and the potential for drug development
The emergence of antibiotic-resistant bacteria has become a major challenge in current clinical treatment. As essential natural molecules involved in innate immunity, antimicrobial peptides (AMPs) have the potential to break the limits of antibiotic resistance. While AMPs are widely presented in various organisms on this planet, the marine environment is unique in generating a large number of AMPs that exhibit characteristic structures and functions. This review summarizes the structures and mechanisms of action of AMPs derived from invertebrates, fish, amphibians, reptiles, and mammals in the ocean. The comparison of AMPs from organisms in different habitats demonstrates the preference of Arg (arginine) and Leu (leucine) in marine AMPs, which might be associated with the adaptation to the unique features of bacterial membranes in marine environments. In addition, the potential and applications of marine AMPs for the development of novel antibiotics are also described. These summaries are expected to provide a reference for the development and utilization of marine resources in drug development or aquiculture.
Identification and Characterization of a Novel Cathelicidin from Hydrophis cyanocinctus with Antimicrobial and Anti-Inflammatory Activity
The abuse of antibiotics and lack of new antibacterial drugs has led to the emergence of superbugs that raise fears of untreatable infections. The Cathelicidin family of antimicrobial peptide (AMP) with varying antibacterial activities and safety is considered to be a promising alternative to conventional antibiotics. In this study, we investigated a novel Cathelicidin peptide named Hydrostatin-AMP2 from the sea snake Hydrophis cyanocinctus. The peptide was identified based on gene functional annotation of the H. cyanocinctus genome and bioinformatic prediction. Hydrostatin-AMP2 showed excellent antimicrobial activity against both Gram-positive and Gram-negative bacteria, including standard and clinical Ampicillin-resistant strains. The results of the bacterial killing kinetic assay demonstrated that Hydrostatin-AMP2 had faster antimicrobial action than Ampicillin. Meanwhile, Hydrostatin-AMP2 exhibited significant anti-biofilm activity including inhibition and eradication. It also showed a low propensity to induce resistance as well as low cytotoxicity and hemolytic activity. Notably, Hydrostatin-AMP2 apparently decreased the production of pro-inflammatory cytokines in the LPS-induced RAW264.7 cell model. To sum up, these findings indicate that Hydrostatin-AMP2 is a potential peptide candidate for the development of new-generation antimicrobial drugs fighting against antibiotic-resistant bacterial infections.
Synthesis, Characterization, and Evaluation of the Antifungal Properties of 3-Indolyl-3-Hydroxy Oxindole Derivatives Against Plant Pathogenic Fungi
To discover novel fungicides with good inhibitory effects on plant fungal diseases, twenty-five 3-indolyl-3-hydroxy oxindole derivatives (3a–3y) were synthesized. These newly derivatives were characterized by NMR and HRMS. Their antifungal activities against five plant pathogenic fungi were assessed in vitro. Most of the compounds exhibited moderate to excellent antifungal activities against the five pathogenic fungi. Notably, compounds 3t, 3u, 3v, and 3w displayed remarkable and broad-spectrum antifungal activities comparable to or superior to those of the fungicides carvacrol (CA) and phenazine-1-carboxylic acid (PCA). Among them, compound 3u displayed the most excellent antifungal activity against Rhizoctonia solani Kühn (R. solani), with an EC50 of 3.44 mg/L, which was superior to CA (7.38 mg/L) and PCA (11.62 mg/L). Preliminary structure–activity relationship (SAR) results indicated that the introduction of I, Cl, or Br substituents at position 5 of the 3-hydroxy-2-oxindole and indole rings is crucial for compounds to exhibit good antifungal activity. The in vivo antifungal activity assay showed that compound 3u has good curative effects against R. solani. The current results suggest that these compounds are capable of serving as promising lead compounds.