Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
4,832 result(s) for "Fan, Rui"
Sort by:
Separation of Glycyrrhizic Acid and Its Derivants from Hydrolyzation in Subcritical Water by Macroporous Resin
Glycyrrhizic acid (GL) and its derivants, glycyrrhetinic acid 3-O-mono-β-d-glucuronide (GAMG) and glycyrrhetinic acid (GA) hydrolyzed in subcritical water, are bioactive substances and edulcorators. In this work, a separation strategy for these three substances was established. The effects of adsorbent and eluent were investigated by static/dynamic adsorption and multi-stage desorption with the mechanism analysis. The adsorption of them onto EXA50 resin was well fitted by the pseudo second-order kinetic model. The optimal dynamic adsorption flow rate was 6 bed volume (BV)/h, and water of pH = 12 was used to elute GL at 4 BV/h, then n-buthanol was used subsequently to elute GA at 1 BV/h, and finally 90% ethanol was applied to elute GAMG at 2 BV/h. As a result, purities of these compounds increased, which demonstrated that this adsorption-desorption technology was simple and efficient, and indicated the potential for large-scale purification and preparation of GL and its derivants in the future.
Maillard and Hydrolytic Reactions in Subcritical Water Extraction of Bioactive Compounds from Licorice
Nowadays, subcritical water extraction (SWE) techniques are extensively investigated worldwide, while the thermal reactions that inevitably occur under subcritical water conditions are rarely studied. In order to investigate the behaviors of the different reactions during SWE of bioactive compounds from licorice, the Maillard reaction process was accessed via their products and the hydrolytic reaction was analyzed according to the kinetic parameters. In addition, the contents of total phenolics and flavonoids in the extracts obtained at the different temperatures were determined and total antioxidant capacities were evaluated by HPLC-ABTS+. The results showed that flavonoids and phenolics from licorice as well as new compounds generated via the Maillard reaction contributed to the antioxidant activity of the extracts. The fluorescence, color and absorbance of the extracts showed that the degree of the Maillard reaction increased with the rise of the extraction temperature. The kinetics of extraction for glycyrrhizic acid showed that it was firstly extracted by diffusion, and then was hydrolyzed into glycyrrhetinic acid 3-O-mono-β-D-glucuronide and glycyrrhetinic acid following a first-order mechanism. These findings could provide deep insights into the SWE process and a new method for producing glycyrrhetinic acid 3-O-mono-β-D-glucuronide and glycyrrhetinic acid.
Association between body mass index and fatty liver risk: A dose-response analysis
Body mass index (BMI) is associated with fatty liver risk, however, the dose-response relationship between continuous BMI changes and fatty liver risk has not been clearly defined. In this study, a cross-sectional study was conducted and a total of 3202 individuals were included. Unconditional logistic regression and restricted cubic spline model were used to analyze the dose-response association of BMI with fatty liver risk. After adjusting for confounding factors (age, gender, hypertension, total cholesterol, triglycerides, glucose, high-density lipoprotein, low-density lipoprotein, uric acid, homocysteine, creatinine, aspartate aminotransferase and alanine transaminase), overweight (OR = 3.55, 95% CI: 2.49–5.06, P  = 2.79 × 10 −12 ), obesity (OR = 7.59, 95% CI: 4.91–11.71, P  = 6.56 × 10 −20 ) were significantly related to fatty liver risk. Stratified by gender (male/female), age (<50 years/≥50 years), prevalence of hypertension (yes/no), the above association was still significant ( P  = 0.004 or lower). In dose-response analysis, BMI was statistically significantly associated with fatty liver risk in a nonlinear fashion (approximately J-shaped fashion, P nonlinearity  = 1.71 × 10 −4 or lower) in the total population and all subgroups mentioned above. Findings from this dose-response analysis suggest that higher BMI (overweight/obesity) is an independent, dose-dependent risk factor for fatty liver, and prevention of fatty liver focusing on continuous changes in BMI should be noted.
RNA modifications: importance in immune cell biology and related diseases
RNA modifications have become hot topics recently. By influencing RNA processes, including generation, transportation, function, and metabolization, they act as critical regulators of cell biology. The immune cell abnormality in human diseases is also a research focus and progressing rapidly these years. Studies have demonstrated that RNA modifications participate in the multiple biological processes of immune cells, including development, differentiation, activation, migration, and polarization, thereby modulating the immune responses and are involved in some immune related diseases. In this review, we present existing knowledge of the biological functions and underlying mechanisms of RNA modifications, including N 6 -methyladenosine (m 6 A), 5-methylcytosine (m 5 C), N 1 -methyladenosine (m 1 A), N 7 -methylguanosine (m 7 G), N 4 -acetylcytosine (ac 4 C), pseudouridine (Ψ), uridylation, and adenosine-to-inosine (A-to-I) RNA editing, and summarize their critical roles in immune cell biology. Via regulating the biological processes of immune cells, RNA modifications can participate in the pathogenesis of immune related diseases, such as cancers, infection, inflammatory and autoimmune diseases. We further highlight the challenges and future directions based on the existing knowledge. All in all, this review will provide helpful knowledge as well as novel ideas for the researchers in this area.
Anger Is More Influential than Joy: Sentiment Correlation in Weibo
Recent years have witnessed the tremendous growth of the online social media. In China, Weibo, a Twitter-like service, has attracted more than 500 million users in less than five years. Connected by online social ties, different users might share similar affective states. We find that the correlation of anger among users is significantly higher than that of joy. While the correlation of sadness is surprisingly low. Moreover, there is a stronger sentiment correlation between a pair of users if they share more interactions. And users with larger number of friends possess more significant sentiment correlation with their neighborhoods. Our findings could provide insights for modeling sentiment influence and propagation in online social networks.
Reductions in water, soil and nutrient losses and pesticide pollution in agroforestry practices: a review of evidence and processes
Background and aims Agroforestry systems combining trees with crops or pastures have been widely used to reduce water, soil, and nutrient losses and associated water pollution from agricultural lands in both temperate and tropical regions. However, reviews on improvement/efficiency and the scope of such reductions by soil, management, climate, and hydrological processes are limited. Methods This paper synthesized the available evidence on the reduction in surface runoff, soil erosion, nutrient, and pollutant losses (e.g., herbicides, pesticides, and antibiotics) to quantify the effectiveness of agroforestry systems on water quality improvement based on published studies. Results On average, agroforestry systems reduced surface runoff, soil, organic carbon, and related nutrient losses by 1–100%, 0–97%, –175–92%, and –265–100%, respectively, with average values of 58%, 65%, 9%, and 50%, respectively. They also lowered herbicide, pesticide, and other pollutant losses by –55–100% (49% on average). Conclusions Reduction efficiency of agroforestry systems is site-dependent and varies widely depending on different biophysical factors. A comprehensive science-based review is needed to generalize agroforestry design and site adaptability for water and soil conservation where climatic, geographical, ecological, and socio-economic conditions are relatively similar in the world.
Nickel(II)/BINOL-catalyzed enantioselective C–H activation via desymmetrization and kinetic resolution
The field of nickel catalysis has witnessed remarkable growth in recent years. However, the use of nickel catalysts in enantioselective C–H activation remains a daunting challenge because of their variable oxidation states, intricate coordination chemistry, and unpredictable reactivity patterns. Herein, we report an enantioselective C–H activation reaction catalyzed by commercially available and air-stable nickel(II) catalyst. Readily available and simple ( S )-BINOL is used as a chiral ligand. This operationally simple protocol enables the synthesis of planar chiral metallocenes in high yields with excellent enantioselectivity through desymmetrization and kinetic resolution. Air-stable planar chiral nickelacycle intermediates are first synthesized via enantioselective C–H nickelation and shown to be possible intermediates of the reaction. Deuterium-labeling studies, alongside the characterization and transformation of chiral nickel(II) species, suggest that C–H cleavage is the enantio-determining step. Moreover, the large-scale synthesis and diverse synthetic transformations underscore the practicality of this protocol. While many catalytic modes of palladium have been able to be supplanted by nickel catalysis, which is more Earth-abundant, enantioselective nickel-catalysed C–H activation remains unexplored. Here, the authors report an enantioselective C–H activation of metallocenes via a nickel–1′-bi-2-naphthol catalytic system.
Power system restoration: a literature review from 2006 to 2016
Power system restoration has attracted more attention and made great progress recently. Research progress of the power system restoration from 2006 to 2016 is reviewed in this paper, including black-start, network reconfiguration and load restoration. Some emerging methods and key techniques are also discussed in the context of the integration of variable renewable energy and development of the smart grid. There is a long way to go to achieve automatic self-healing in bulk power systems because of its extreme complexity. However, rapidly developing artificial intelligence technology will eventually enable the step-by-step dynamic decision-making based on the situation awareness of supervisory control and data acquisition systems (SCADA) and wide area measurement systems (WAMS) in the near future.
Super-resolution CT Image Reconstruction Based on Dictionary Learning and Sparse Representation
In this paper, a single-computed tomography (CT) image super-resolution (SR) reconstruction scheme is proposed. This SR reconstruction scheme is based on sparse representation theory and dictionary learning of low- and high-resolution image patch pairs to improve the poor quality of low-resolution CT images obtained in clinical practice using low-dose CT technology. The proposed strategy is based on the idea that image patches can be well represented by sparse coding of elements from an overcomplete dictionary. To obtain similarity of the sparse representations, two dictionaries of low- and high-resolution image patches are jointly trained. Then, sparse representation coefficients extracted from the low-resolution input patches are used to reconstruct the high-resolution output. Sparse representation is used such that the trained dictionary pair can reduce computational costs. Combined with several appropriate iteration operations, the reconstructed high-resolution image can attain better image quality. The effectiveness of the proposed method is demonstrated using both clinical CT data and simulation image data. Image quality evaluation indexes (root mean squared error (RMSE) and peak signal-to-noise ratio (PSNR)) indicate that the proposed method can effectively improve the resolution of a single CT image.
Evaluation of oat β-glucan-marine collagen peptide mixed gel and its application as the fat replacer in the sausage products
The food industry is currently shown the concern with low-fat products. This study aims to evaluate the properties of oat β-glucan(OG)-marine collagen peptide (MCP) mixed gels induced by high pressure at different ratios, pressures, pH levels and the superiority of application in the sausage. The results indicated that the typical gel with high levels of hardness, cohesiveness, springiness, and chewiness, as well as high water holding and oil adsorption capacities was formed using the OG/MCP ratio of 10:1 under 400 MPa at pH 6.0. The mixed gel replacing with 50% fat significantly increased the springiness and chewing(P<0.05), and sausages with 80% mixed gel were significantly juicier than that of the control sausage(P<0.05). Therefore, OG-MCP mixed gel could be used in the reformulation of low-fat meat products to enhance their safety and nutritional value.