Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
4 result(s) for "Fanariotis, Anastasios"
Sort by:
Power Efficient Machine Learning Models Deployment on Edge IoT Devices
Computing has undergone a significant transformation over the past two decades, shifting from a machine-based approach to a human-centric, virtually invisible service known as ubiquitous or pervasive computing. This change has been achieved by incorporating small embedded devices into a larger computational system, connected through networking and referred to as edge devices. When these devices are also connected to the Internet, they are generally named Internet-of-Thing (IoT) devices. Developing Machine Learning (ML) algorithms on these types of devices allows them to provide Artificial Intelligence (AI) inference functions such as computer vision, pattern recognition, etc. However, this capability is severely limited by the device’s resource scarcity. Embedded devices have limited computational and power resources available while they must maintain a high degree of autonomy. While there are several published studies that address the computational weakness of these small systems-mostly through optimization and compression of neural networks- they often neglect the power consumption and efficiency implications of these techniques. This study presents power efficiency experimental results from the application of well-known and proven optimization methods using a set of well-known ML models. The results are presented in a meaningful manner considering the “real world” functionality of devices and the provided results are compared with the basic “idle” power consumption of each of the selected systems. Two different systems with completely different architectures and capabilities were used providing us with results that led to interesting conclusions related to the power efficiency of each architecture.
Reducing the Power Consumption of Edge Devices Supporting Ambient Intelligence Applications
Having as a main objective the exploration of power efficiency of microcontrollers running machine learning models, this manuscript contrasts the performance of two types of state-of-the-art microcontrollers, namely ESP32 with an LX6 core and ESP32-S3 with an LX7 core, focusing on the impact of process acceleration technologies like cache memory and vectoring. The research employs experimental methods, where identical machine learning models are run on both microcontrollers under varying conditions, with particular attention to cache optimization and vector instruction utilization. Results indicate a notable difference in power efficiency between the two microcontrollers, directly linked to their respective process acceleration capabilities. The study concludes that while both microcontrollers show efficacy in running machine learning models, ESP32-S3 with an LX7 core demonstrates superior power efficiency, attributable to its advanced vector instruction set and optimized cache memory usage. These findings provide valuable insights for the design of power-efficient embedded systems supporting machine learning for a variety of applications, including IoT and wearable devices, ambient intelligence, and edge computing and pave the way for future research in optimizing machine learning models for low-power, embedded environments.
Design Space Exploration of a Multi-Model AI-Based Indoor Localization System
In this paper, we present the results of a performance evaluation and optimization process of an indoor positioning system (IPS) designed to operate on portable as well as miniaturized embedded systems. The proposed method uses the Received Signal Strength Indicator (RSSI) values from multiple Bluetooth Low-Energy (BLE) beacons scattered around interior spaces. The beacon signals were received from the user devices and processed through an RSSI filter and a group of machine learning (ML) models, in an arrangement of one model per detected node. Finally, a multilateration problem was solved using as an input the inferred distances from the advertising nodes and returning the final position approximation. In this work, we first presented the evaluation of different ML models for inferring the distance between the devices and the installed beacons by applying different optimization algorithms. Then, we presented model reduction methods to implement the optimized algorithm on the embedded system by appropriately adapting it to its constraint resources and compared the results, demonstrating the efficiency of the proposed method.
The V-Lab VR Educational Application Framework
This paper presents the V-Lab, a VR application development framework for educational scenarios mainly involving scientific processes executed in laboratory environments such as chemistry and biology laboratories. This work is an extension of the Onlabs simulator which has been developed by the Hellenic Open University as a distance teaching enabler for similar subjects, helping to alleviate the need for access to the physical laboratory infrastructure; thus, shortening training periods of students in the laboratory and making their training during the periods of physical presence more productive and secure. The extensions of the Onlabs to deliver an enhanced and modular framework that can be extended to multiple educational scenarios is the work performed within the context of the European project XR2Learn (Leveraging the European XR industry technologies to empower immersive learning and training).