Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
13 result(s) for "Fanchi, Lorenzo"
Sort by:
Neoadjuvant immunotherapy leads to pathological responses in MMR-proficient and MMR-deficient early-stage colon cancers
PD-1 plus CTLA-4 blockade is highly effective in advanced-stage, mismatch repair (MMR)-deficient (dMMR) colorectal cancers, yet not in MMR-proficient (pMMR) tumors. We postulated a higher efficacy of neoadjuvant immunotherapy in early-stage colon cancers. In the exploratory NICHE study (ClinicalTrials.gov: NCT03026140 ), patients with dMMR or pMMR tumors received a single dose of ipilimumab and two doses of nivolumab before surgery, the pMMR group with or without celecoxib. The primary objective was safety and feasibility; 40 patients with 21 dMMR and 20 pMMR tumors were treated, and 3 patients received nivolumab monotherapy in the safety run-in. Treatment was well tolerated and all patients underwent radical resections without delays, meeting the primary endpoint. Of the patients who received ipilimumab + nivolumab (20 dMMR and 15 pMMR tumors), 35 were evaluable for efficacy and translational endpoints. Pathological response was observed in 20/20 (100%; 95% exact confidence interval (CI): 86–100%) dMMR tumors, with 19 major pathological responses (MPRs, ≤10% residual viable tumor) and 12 pathological complete responses. In pMMR tumors, 4/15 (27%; 95% exact CI: 8–55%) showed pathological responses, with 3 MPRs and 1 partial response. CD8 + PD-1 + T cell infiltration was predictive of response in pMMR tumors. These data indicate that neoadjuvant immunotherapy may have the potential to become the standard of care for a defined group of colon cancer patients when validated in larger studies with at least 3 years of disease-free survival data. Results from the NICHE study show remarkable pathological responses to neoadjuvant combination immunotherapy in patients with early-stage colon cancer and uncover potential biomarkers of response.
Low and variable tumor reactivity of the intratumoral TCR repertoire in human cancers
Infiltration of human cancers by T cells is generally interpreted as a sign of immune recognition, and there is a growing effort to reactivate dysfunctional T cells at such tumor sites1. However, these efforts only have value if the intratumoral T cell receptor (TCR) repertoire of such cells is intrinsically tumor reactive, and this has not been established in an unbiased manner for most human cancers. To address this issue, we analyzed the intrinsic tumor reactivity of the intratumoral TCR repertoire of CD8+ T cells in ovarian and colorectal cancer—two tumor types for which T cell infiltrates form a positive prognostic marker2,3. Data obtained demonstrate that a capacity to recognize autologous tumor is limited to approximately 10% of intratumoral CD8+ T cells. Furthermore, in two of four patient samples tested, no tumor-reactive TCRs were identified, despite infiltration of their tumors by T cells. These data indicate that the intrinsic capacity of intratumoral T cells to recognize adjacent tumor tissue can be rare and variable, and suggest that clinical efforts to reactivate intratumoral T cells will benefit from approaches that simultaneously increase the quality of the intratumoral TCR repertoire.
Tumor organoid–T-cell coculture systems
T cells are key players in cancer immunotherapy, but strategies to expand tumor-reactive cells and study their interactions with tumor cells at the level of an individual patient are limited. Here we describe the generation and functional assessment of tumor-reactive T cells based on cocultures of tumor organoids and autologous peripheral blood lymphocytes. The procedure consists of an initial coculture of 2 weeks, in which tumor-reactive T cells are first expanded in the presence of (IFNγ-stimulated) autologous tumor cells. Subsequently, T cells are evaluated for their capacity to carry out effector functions (IFNγ secretion and degranulation) after recognition of tumor cells, and their capacity to kill tumor organoids. This strategy is unique in its use of peripheral blood as a source of tumor-reactive T cells in an antigen-agnostic manner. In 2 weeks, tumor-reactive CD8 + T-cell populations can be obtained from ~33–50% of samples from patients with non-small-cell lung cancer (NSCLC) and microsatellite-instable colorectal cancer (CRC). This enables the establishment of ex vivo test systems for T-cell-based immunotherapy at the level of the individual patient. Tumor-reactive T cells are generated by coculturing tumor organoids and autologous peripheral blood lymphocytes and are evaluated for their capacity to carry out effector functions after recognition of tumor cells and whether they kill tumor organoids.
Neoadjuvant versus adjuvant ipilimumab plus nivolumab in macroscopic stage III melanoma
Adjuvant ipilimumab (anti-CTLA-4) and nivolumab (anti-PD-1) both improve relapse-free survival of stage III melanoma patients 1 , 2 . In stage IV disease, the combination of ipilimumab + nivolumab is superior to ipilimumab alone and also appears to be more effective than nivolumab monotherapy 3 . Preclinical work suggests that neoadjuvant application of checkpoint inhibitors may be superior to adjuvant therapy 4 . To address this question and to test feasibility, 20 patients with palpable stage III melanoma were 1:1 randomized to receive ipilimumab 3 mg kg −1 and nivolumab 1 mg kg −1 , as either four courses after surgery (adjuvant arm) or two courses before surgery and two courses postsurgery (neoadjuvant arm). Neoadjuvant therapy was feasible, with all patients undergoing surgery at the preplanned time point. However in both arms, 9/10 patients experienced one or more grade 3/4 adverse events. Pathological responses were achieved in 7/9 (78%) patients treated in the neoadjuvant arm. None of these patients have relapsed so far (median follow-up, 25.6 months). We found that neoadjuvant ipilimumab + nivolumab expand more tumor-resident T cell clones than adjuvant application. While neoadjuvant therapy appears promising, with the current regimen it induced high toxicity rates; therefore, it needs further investigation to preserve efficacy but reduce toxicity. Neoadjuvant combination immunotherapy in patients with advanced melanoma shows favorable activity over adjuvant treatment and warrants future evaluation with modified dosing schedules to reduce treatment-related adverse events.
Reverse TCR repertoire evolution toward dominant low-affinity clones during chronic CMV infection
Adaptive evolution is a key feature of T cell immunity. During acute immune responses, T cells harboring high-affinity T cell antigen receptors (TCRs) are preferentially expanded, but whether affinity maturation by clonal selection continues through the course of chronic infections remains unresolved. Here we investigated the evolution of the TCR repertoire and its affinity during the course of infection with cytomegalovirus, which elicits large T cell populations in humans and mice. Using single-cell and bulk TCR sequencing and structural affinity analyses of cytomegalovirus-specific T cells, and through the generation and in vivo monitoring of defined TCR repertoires, we found that the immunodominance of high-affinity T cell clones declined during the chronic infection phase, likely due to cellular senescence. These data showed that under conditions of chronic antigen exposure, low-affinity TCRs preferentially expanded within the TCR repertoire, with implications for immunotherapeutic strategies. Busch and colleagues use single-cell and bulk TCR sequencing and structural affinity analyses of CMV-specific T cells to show that the immunodominance of high-affinity T cell clones declines during chronic infection with CMV, likely due to cellular senescence.
High-Throughput Immunogenetics Reveals a Lack of Physiological T Cell Clusters in Patients With Autoimmune Cytopenias
Autoimmune cytopenias (AIC) such as immune thrombocytopenia or autoimmune hemolytic anemia are claimed to be essentially driven by a dysregulated immune system. Using next-generation immunosequencing we profiled 59 T and B cell repertoires ( and ) of 25 newly diagnosed patients with primary or secondary (lymphoma-associated) AIC to test the hypothesis if these patients present a disease-specific immunological signature that could reveal pathophysiological clues and eventually be exploited as blood-based biomarker. Global and repertoire metrics as well as gene usage distribution showed uniform characteristics for all lymphoma patients (high clonality and preferential usage of specific - and genes), but no AIC-specific signature. Since T cell immune reactions toward antigens are unique and polyclonal, we clustered TCRβ clones based on target recognition using the GLIPH (grouping of lymphocyte interactions by paratope hotspots) algorithm. This analysis revealed a considerable lack of physiological T cell clusters in patients with primary AIC. Interestingly, this signature did not discriminate between the different subentities of AIC and was also found in an independent cohort of 23 patients with active autoimmune hepatitis. Taken together, our data suggests that the identified T cell cluster signature could represent a blood biomarker of autoimmune conditions in general and should be functionally validated in future studies.
The CMV-Specific CD8+ T Cell Response Is Dominated by Supra-Public Clonotypes with High Generation Probabilities
Evolutionary processes govern the selection of T cell clonotypes that are optimally suited to mediate efficient antigen-specific immune responses against pathogens and tumors. While the theoretical diversity of T cell receptor (TCR) sequences is vast, the antigen-specific TCR repertoire is restricted by its peptide epitope and the presenting major histocompatibility complex (pMHC). It remains unclear how many TCR sequences are recruited into an antigen-specific T cell response, both within and across different organisms, and which factors shape both of these distributions. Infection of mice with ovalbumin-expressing cytomegalovirus (IE2-OVA-mCMV) represents a well-studied model system to investigate T cell responses given their size and longevity. Here we investigated > 180,000 H2kb/SIINFEKL-recognizing TCR CDR3α or CDR3β sequences from 25 individual mice spanning seven different time points during acute infection and memory inflation. In-depth repertoire analysis revealed that from a pool of highly diverse, but overall limited sequences, T cell responses were dominated by public clonotypes, partly with unexpectedly extreme degrees of sharedness between individual mice (“supra-public clonotypes”). Public clonotypes were found exclusively in a fraction of TCRs with a high generation probability. Generation probability and degree of sharedness select for highly functional TCRs, possibly mediated through elevating intraindividual precursor frequencies of clonotypes.
Tumor organoid-T-cell coculture systems
T cells are key players in cancer immunotherapy, but strategies to expand tumor-reactive cells and study their interactions with tumor cells at the level of an individual patient are limited. Here we describe the generation and functional assessment of tumor-reactive T cells based on cocultures of tumor organoids and autologous peripheral blood lymphocytes. The procedure consists of an initial coculture of 2 weeks, in which tumor-reactive T cells are first expanded in the presence of (IFN[gamma]-stimulated) autologous tumor cells. Subsequently, T cells are evaluated for their capacity to carry out effector functions (IFN[gamma] secretion and degranulation) after recognition of tumor cells, and their capacity to kill tumor organoids. This strategy is unique in its use of peripheral blood as a source of tumor-reactive T cells in an antigen-agnostic manner. In 2 weeks, tumor-reactive CD8.sup.+ T-cell populations can be obtained from ~33-50% of samples from patients with non-small-cell lung cancer (NSCLC) and microsatellite-instable colorectal cancer (CRC). This enables the establishment of ex vivo test systems for T-cell-based immunotherapy at the level of the individual patient.