Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
23 result(s) for "Faravelli, Giulia"
Sort by:
Inhibition of the mechano-enzymatic amyloidogenesis of transthyretin: role of ligand affinity, binding cooperativity and occupancy of the inner channel
Dissociation of the native transthyretin (TTR) tetramer is widely accepted as the critical step in TTR amyloid fibrillogenesis. It is modelled by exposure of the protein to non-physiological low pH in vitro and is inhibited by small molecule compounds, such as the drug tafamidis. We have recently identified a new mechano-enzymatic pathway of TTR fibrillogenesis in vitro , catalysed by selective proteolytic cleavage, which produces a high yield of genuine amyloid fibrils. This pathway is efficiently inhibited only by ligands that occupy both binding sites in TTR. Tolcapone, which is bound with similar high affinity in both TTR binding sites without the usual negative cooperativity, is therefore of interest. Here we show that TTR fibrillogenesis by the mechano-enzymatic pathway is indeed more potently inhibited by tolcapone than by tafamidis but neither, even in large molar excess, completely prevents amyloid fibril formation. In contrast, mds84, the prototype of our previously reported bivalent ligand TTR ‘superstabiliser’ family, is notably more potent than the monovalent ligands and we show here that this apparently reflects the critical additional interactions of its linker within the TTR central channel. Our findings have major implications for therapeutic approaches in TTR amyloidosis.
C. elegans expressing D76N β2-microglobulin: a model for in vivo screening of drug candidates targeting amyloidosis
The availability of a genetic model organism with which to study key molecular events underlying amyloidogenesis is crucial for elucidating the mechanism of the disease and the exploration of new therapeutic avenues. The natural human variant of β 2 -microglobulin (D76N β 2 -m) is associated with a fatal familial form of systemic amyloidosis. Hitherto, no animal model has been available for studying in vivo the pathogenicity of this protein. We have established a transgenic C. elegans line, expressing the human D76N β 2 -m variant. Using the INVertebrate Automated Phenotyping Platform (INVAPP) and the algorithm Paragon, we were able to detect growth and motility impairment in D76N β 2 -m expressing worms. We also demonstrated the specificity of the β 2 -m variant in determining the pathological phenotype by rescuing the wild type phenotype when β 2 -m expression was inhibited by RNA interference (RNAi). Using this model, we have confirmed the efficacy of doxycycline, an inhibitor of the aggregation of amyloidogenic proteins, in rescuing the phenotype. In future, this C. elegans model, in conjunction with the INVAPP/Paragon system, offers the prospect of high-throughput chemical screening in the search for new drug candidates.
Human wild-type and D76N β2-microglobulin variants are significant proteotoxic and metabolic stressors for transgenic C. elegans
β2-microglobulin (β2-m) is a plasma protein derived from physiological shedding of the class I major histocompatibility complex (MHCI), causing human systemic amyloidosis either due to persistently high concentrations of the wild-type (WT) protein in hemodialyzed patients, or in presence of mutations, such as D76N β2-m, which favor protein deposition in the adulthood, despite normal plasma levels. Here we describe a new transgenic Caenorhabditis elegans (C. elegans) strain expressing human WT β2-m at high concentrations, mimicking the condition that underlies dialysis-related amyloidosis (DRA) and we compare it to a previously established strain expressing the highly amyloidogenic D76N β2-m at lower concentrations. Both strains exhibit behavioral defects, the severity of which correlates with β2-m levels rather than with the presence of mutations, being more pronounced in WT β2-m worms. β2-m expression also has a deep impact on the nematodes' proteomic and metabolic profiles. Most significantly affected processes include protein degradation and stress response, amino acids metabolism, and bioenergetics. Molecular alterations are more pronounced in worms expressing WT β2-m at high concentration compared to D76N β2-m worms. Altogether, these data show that β2-m is a proteotoxic protein in vivo also in its wild-type form, and that concentration plays a key role in modulating pathogenicity. Our transgenic nematodes recapitulate the distinctive features subtending DRA compared to hereditary β2-m amyloidosis (high levels of non-mutated β2-m vs. normal levels of variant β2-m) and provide important clues on the molecular bases of these human diseases.
Navigating Growth: A Strategic Deal Proposal for Ferretti Group's Acquisition of Fountaine Pajot
This dissertation analyses the potential acquisition of Fountaine Pajot by Ferretti Group, a leading player in the luxury yacht industry. Ferretti aims to expand its product portfolio and market reach through a combination of organic growth and strategic mergers and acquisitions. Fountaine Pajot, a key producer of premium multihull yachts with a focus on eco-friendly innovation, aligns well with Ferretti’s strategic goals. The study includes a detailed analysis of both businesses, their market positioning, and the luxury yacht sector, alongside an in-depth valuation of Ferretti and Fountaine Pajot as separate entities and as a combined group post-acquisition. The objective is to evaluate whether the acquisition will create value for Ferretti’s shareholders, based on strategic fit and financial performance. The analysis recommends a 50% acquisition premium, driven by a current market undervaluation of Fountaine Pajot’s growth potential and by the attainable synergies resulting from the operation, which are estimated at €246.3 million. The combined entity is valued at approximately €1.5 billion. However, to ensure value creation, Ferretti must manage the integration carefully to realize these synergies. Given these factors, the dissertation suggests negotiating the acquisition at a premium that accounts for Fountaine Pajot’s undervaluation, while also recommending an all-cash deal to minimize risk and ensure optimal outcomes for Ferretti’s shareholders.
Human wild‐type and D76N β 2 ‐microglobulin variants are significant proteotoxic and metabolic stressors for transgenic C. elegans
β 2 ‐microglobulin (β 2 ‐m) is a plasma protein derived from physiological shedding of the class I major histocompatibility complex (MHCI), causing human systemic amyloidosis either due to persistently high concentrations of the wild‐type (WT) protein in hemodialyzed patients, or in presence of mutations, such as D76N β 2 ‐m, which favor protein deposition in the adulthood, despite normal plasma levels. Here we describe a new transgenic Caenorhabditis elegans ( C. elegans ) strain expressing human WT β 2 ‐m at high concentrations, mimicking the condition that underlies dialysis‐related amyloidosis (DRA) and we compare it to a previously established strain expressing the highly amyloidogenic D76N β 2 ‐m at lower concentrations. Both strains exhibit behavioral defects, the severity of which correlates with β 2 ‐m levels rather than with the presence of mutations, being more pronounced in WT β 2 ‐m worms. β 2 ‐m expression also has a deep impact on the nematodes' proteomic and metabolic profiles. Most significantly affected processes include protein degradation and stress response, amino acids metabolism, and bioenergetics. Molecular alterations are more pronounced in worms expressing WT β 2 ‐m at high concentration compared to D76N β 2 ‐m worms. Altogether, these data show that β 2 ‐m is a proteotoxic protein in vivo also in its wild‐type form, and that concentration plays a key role in modulating pathogenicity. Our transgenic nematodes recapitulate the distinctive features subtending DRA compared to hereditary β 2 ‐m amyloidosis (high levels of non‐mutated β 2 ‐m vs. normal levels of variant β 2 ‐m) and provide important clues on the molecular bases of these human diseases.
C. elegans expressing D76N β 2 -microglobulin: a model for in vivo screening of drug candidates targeting amyloidosis
The availability of a genetic model organism with which to study key molecular events underlying amyloidogenesis is crucial for elucidating the mechanism of the disease and the exploration of new therapeutic avenues. The natural human variant of β -microglobulin (D76N β -m) is associated with a fatal familial form of systemic amyloidosis. Hitherto, no animal model has been available for studying in vivo the pathogenicity of this protein. We have established a transgenic C. elegans line, expressing the human D76N β -m variant. Using the INVertebrate Automated Phenotyping Platform (INVAPP) and the algorithm Paragon, we were able to detect growth and motility impairment in D76N β -m expressing worms. We also demonstrated the specificity of the β -m variant in determining the pathological phenotype by rescuing the wild type phenotype when β -m expression was inhibited by RNA interference (RNAi). Using this model, we have confirmed the efficacy of doxycycline, an inhibitor of the aggregation of amyloidogenic proteins, in rescuing the phenotype. In future, this C. elegans model, in conjunction with the INVAPP/Paragon system, offers the prospect of high-throughput chemical screening in the search for new drug candidates.
Nusinersen treatment and cerebrospinal fluid neurofilaments: An explorative study on Spinal Muscular Atrophy type 3 patients
The antisense oligonucleotide Nusinersen has been recently licensed to treat spinal muscular atrophy (SMA). Since SMA type 3 is characterized by variable phenotype and milder progression, biomarkers of early treatment response are urgently needed. We investigated the cerebrospinal fluid (CSF) concentration of neurofilaments in SMA type 3 patients treated with Nusinersen as a potential biomarker of treatment efficacy. The concentration of phosphorylated neurofilaments heavy chain (pNfH) and light chain (NfL) in the CSF of SMA type 3 patients was evaluated before and after six months since the first Nusinersen administration, performed with commercially available enzyme‐linked immunosorbent assay (ELISA) kits. Clinical evaluation of SMA patients was performed with standardized motor function scales. Baseline neurofilament levels in patients were comparable to controls, but significantly decreased after six months of treatment, while motor functions were only marginally ameliorated. No significant correlation was observed between the change in motor functions and that of neurofilaments over time. The reduction of neurofilament levels suggests a possible early biochemical effect of treatment on axonal degeneration, which may precede changes in motor performance. Our study mandates further investigations to assess neurofilaments as a marker of treatment response.
Multi-omics profiling of CSF from spinal muscular atrophy type 3 patients after nusinersen treatment: a 2-year follow-up multicenter retrospective study
Spinal muscular atrophy (SMA) is a neurodegenerative disorder caused by mutations in the SMN1 gene resulting in reduced levels of the SMN protein. Nusinersen, the first antisense oligonucleotide (ASO) approved for SMA treatment, binds to the SMN2 gene, paralogue to SMN1, and mediates the translation of a functional SMN protein. Here, we used longitudinal high-resolution mass spectrometry (MS) to assess both global proteome and metabolome in cerebrospinal fluid (CSF) from ten SMA type 3 patients, with the aim of identifying novel readouts of pharmacodynamic/response to treatment and predictive markers of treatment response. Patients had a median age of 33.5 [29.5; 38.25] years, and 80% of them were ambulant at time of the enrolment, with a median HFMSE score of 37.5 [25.75; 50.75]. Untargeted CSF proteome and metabolome were measured using high-resolution MS (nLC-HRMS) on CSF samples obtained before treatment (T0) and after 2 years of follow-up (T22). A total of 26 proteins were found to be differentially expressed between T0 and T22 upon VSN normalization and LIMMA differential analysis, accounting for paired replica. Notably, key markers of the insulin-growth factor signaling pathway were upregulated after treatment together with selective modulation of key transcription regulators. Using CombiROC multimarker signature analysis, we suggest that detecting a reduction of SEMA6A and an increase of COL1A2 and GRIA4 might reflect therapeutic efficacy of nusinersen. Longitudinal metabolome profiling, analyzed with paired t-Test, showed a significant shift for some aminoacid utilization induced by treatment, whereas other metabolites were largely unchanged. Together, these data suggest perturbation upon nusinersen treatment still sustained after 22 months of follow-up and confirm the utility of CSF multi-omic profiling as pharmacodynamic biomarker for SMA type 3. Nonetheless, validation studies are needed to confirm this evidence in a larger sample size and to further dissect combined markers of response to treatment.
Targeted antisense oligonucleotide treatment rescues developmental alterations in spinal muscular atrophy organoids
Spinal muscular atrophy (SMA) is a severe neurological disease caused by mutations in the SMN1 gene, characterized by early onset and degeneration of lower motor neurons. Understanding early neurodevelopmental defects in SMA is crucial for optimizing therapeutic interventions. Using spinal cord and cerebral organoids generated from multiple SMA type 1 male donors, we revealed widespread disease mechanisms beyond motor neuron degeneration. Single-cell transcriptomics uncovered pervasive alterations across neural populations, from progenitors to neurons, demonstrating SMN-dependent dysregulation of neuronal differentiation programs. Multi-electrode array (MEA) analysis identified consistent hyperexcitability in both spinal and brain organoids, establishing altered electrical properties as a central nervous system-wide feature of pathogenesis. Early administration of an optimized antisense oligonucleotide (ASO) that increased SMN levels rescued morphological and functional deficits in spinal cord organoids across different genetic backgrounds. Importantly, this early intervention precisely corrected aberrant splicing in here identified SMN1 targets enriched at critical nodes of neuronal differentiation. Our findings demonstrate that early developmental defects are core features of SMA pathogenesis that can be prevented by timely therapeutic intervention, providing insights for optimizing treatment strategies. Spinal cord organoids from SMA patients reveal widespread neurodevelopmental defects. Single-cell and functional analyses show global dysregulation, which can be rescued by SMN-increasing therapy, stressing the importance of timely intervention.
The lifetime prevalence and impact of generalized anxiety disorders in an epidemiologic Italian National Survey carried out by clinicians by means of semi-structured interviews
Background Generalized anxiety disorder (GAD) is one of the most reported diagnoses in psychiatry, but there is some discrepancy between the cases identified in community studies and those identified in tertiary care. This study set out to evaluate whether the use of clinicians as interviewers may provide estimates in a community survey close to those observed in primary or specialized care. Methods This is a community survey on a randomly selected sample of 2338 adult subjects. The Advanced Neuropsychiatric Tools and Assessment Schedule (ANTAS) was administered by clinicians, providing lifetime diagnosis based on the DSM-IV-TR. Health-related quality of life (HR-QoL) was measured with the Short-Form Health Survey (SF-12). Results Overall, 55 (2.3%) subjects met the criteria for GAD, with greater prevalence in women (3.6%) than in men (0.9%): OR = 4.02; 95%CI: 1.96–8.26. Up to 40% of those with GAD had at least another diagnosis of mood, anxiety, or eating disorders. The mean score of SF-12 in people with GAD was 32.33 ± 6.8, with a higher attributable burden than in other conditions except for major depressive disorder. Conclusions We found a relatively lower lifetime prevalence of GAD than in community surveys based on lay interviewers and a structured interview. The identified cases of GAD showed a strong impact on the quality of life regardless of co-morbidity and high risk in women, suggesting a profile similar to the one identified from studies in primary and specialized care.