Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
3
result(s) for
"Fattorini, Véronique"
Sort by:
A dual mechanism of action of AT-527 against SARS-CoV-2 polymerase
by
Selisko, Barbara
,
Falcou, Camille
,
Feracci, Mikael
in
101/28
,
631/45/607/1167
,
631/535/1258/1259
2022
The guanosine analog AT-527 represents a promising candidate against Severe Acute Respiratory Syndrome coronavirus type 2 (SARS-CoV-2). AT-527 recently entered phase III clinical trials for the treatment of COVID-19. Once in cells, AT-527 is converted into its triphosphate form, AT-9010, that presumably targets the viral RNA-dependent RNA polymerase (RdRp, nsp12), for incorporation into viral RNA. Here we report a 2.98 Å cryo-EM structure of the SARS-CoV-2 nsp12-nsp7-nsp8 2-RNA complex, showing AT-9010 bound at three sites of nsp12. In the RdRp active-site, one AT-9010 is incorporated at the 3′ end of the RNA product strand. Its modified ribose group (2′-fluoro, 2′-methyl) prevents correct alignment of the incoming NTP, in this case a second AT-9010, causing immediate termination of RNA synthesis. The third AT-9010 is bound to the N-terminal domain of nsp12known as the NiRAN. In contrast to native NTPs, AT-9010 is in a flipped orientation in the active-site, with its guanine base unexpectedly occupying a previously unnoticed cavity. AT-9010 outcompetes all native nucleotides for NiRAN binding, inhibiting its nucleotidyltransferase activity. The dual mechanism of action of AT-527 at both RdRp and NiRAN active sites represents a promising research avenue against COVID-19.
Journal Article
Protein-primed RNA synthesis in SARS-CoVs and structural basis for inhibition by AT-527
2021
Summary How viruses from the Coronaviridae family initiate viral RNA synthesis is unknown. Here we show that the SARS-CoV-1 and −2 Nidovirus RdRp-Associated Nucleotidyltransferase (NiRAN) domain on nsp12 uridylates the viral cofactor nsp8, forming a UMP-Nsp8 covalent intermediate that subsequently primes RNA synthesis from a poly(A) template; a protein-priming mechanism reminiscent of Picornaviridae enzymes. In parallel, the RdRp active site of nsp12 synthesizes a pppGpU primer, which primes (-)ssRNA synthesis at the precise genome-poly(A) junction. The guanosine analogue 5’-triphosphate AT-9010 (prodrug: AT-527) tightly binds to the NiRAN and inhibits both nsp8-labeling and the initiation of RNA synthesis. A 2.98 Å resolution Cryo-EM structure of the SARS-CoV-2 nsp12-nsp7-(nsp8)2 /RNA/NTP quaternary complex shows AT-9010 simultaneously binds to both NiRAN and RdRp active site of nsp12, blocking their respective activities. AT-527 is currently in phase II clinical trials, and is a potent inhibitor of SARS-CoV-1 and −2, representing a promising drug for COVID-19 treatment. Competing Interest Statement S.G., A.M., K.L. and J.P.S. are employees of ATEA Pharmaceuticals, Inc. The other authors declare no competing interests.
A Fluorescence-based High Throughput-Screening assay for the SARS-CoV RNA synthesis complex
by
Shannon, Ashleigh
,
Fattorini, Veronique
,
Canard, Bruno
in
Antiviral agents
,
Biochemistry
,
Coronaviruses
2020
The Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) emergence in 2003 introduced the first serious human coronavirus pathogen to an unprepared world. To control emerging viruses, existing successful anti(retro)viral therapies can inspire antiviral strategies, as conserved viral enzymes (eg., viral proteases and RNA-dependent RNA polymerases) represent targets of choice. Since 2003, much effort has been expended in the characterization of the SARS-CoV replication/transcription machinery. Until recently, a pure and highly active preparation of SARS-CoV recombinant RNA synthesis machinery was not available, impeding target-based high throughput screening of drug candidates against this viral family. The current Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) pandemic revealed a new pathogen whose RNA synthesis machinery is highly (>96% aa identity) homologous to SARS-CoV. This phylogenetic relatedness highlights the potential use of conserved replication enzymes to discover inhibitors against this significant pathogen, which in turn, contributes to scientific preparedness against emerging viruses. Here, we report the use of a purified and highly active SARS-CoV replication/transcription complex (RTC) to set-up a high-throughput screening of Coronavirus RNA synthesis inhibitors. The screening of a small (1,520 compounds) chemical library of FDA-approved drugs demonstrates the robustness of our assay and will allow to speed-up drug repositioning or novel drug discovery against the SARS-CoV-2. Competing Interest Statement The authors have declared no competing interest.