Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
4
result(s) for
"Faulkner, Regina L"
Sort by:
Development of hippocampal mossy fiber synaptic outputs by new neurons in the adult brain
2008
New neurons are continuously generated in restricted regions of the adult mammalian brain. Although these adult-born neurons have been shown to receive synaptic inputs, little is known about their synaptic outputs. Using retrovirus-mediated birth-dating and labeling in combination with serial section electron microscopic reconstruction, we report that mossy fiber en passant boutons of adult-born dentate granule cells form initial synaptic contacts with CA3 pyramidal cells within 2 weeks after their birth and reach morphologic maturity within 8 weeks in the adult hippocampus. Knockdown of Disrupted-in-Schizophrenia-1 (DISC1) in newborn granule cells leads to defects in axonal targeting and development of synaptic outputs in the adult brain. Together with previous reports of synaptic inputs, these results demonstrate that adult-born neurons are fully integrated into the existing neuronal circuitry. Our results also indicate a role for DISC1 in presynaptic development and may have implications for the etiology of schizophrenia and related mental disorders.
Journal Article
Plexin signaling selectively regulates the stereotyped pruning of corticospinal axons from visual cortex
2008
Neurons in the developing CNS tend to send out long axon collaterals to multiple target areas. For these neurons to attain specific connections, some of their axon collaterals are subsequently pruned--a process called stereotyped axon pruning. One of the most striking examples of stereotyped pruning in the CNS is the pruning of corticospinal tract (CST) axons. The long CST collaterals from layer V neurons of the visual and motor cortices are differentially pruned during development. Here we demonstrate that select plexins and neuropilins, which serve as coreceptors for semaphorins, are expressed in visual cortical neurons at the time when CST axon collaterals are stereotypically pruned. By analyzing mutant mice, we find that the pruning of visual, but not motor, CST axon collaterals depends on plexin-A3, plexin-A4, and neuropilin-2. Expression pattern study suggests that Sema3F is a candidate local cue for the pruning of visual CST axons. Using electron microscopic analysis, we also show that visual CST axon collaterals form synaptic contacts in the spinal cord before pruning and that the unpruned collaterals in adult mutant mice are unmyelinated and maintain their synaptic contacts. Our results indicate that the stereotyped pruning of the visual and motor CST axon collaterals is differentially regulated and that this specificity arises from the differential expression of plexin receptors in the cortex.
Journal Article
Dorsal turning of motor corticospinal axons at the pyramidal decussation requires plexin signaling
by
Liu, Xiao-Bo
,
Faulkner, Regina L
,
Cheng, Hwai-Jong
in
Axon guidance
,
Cerebral cortex
,
Cortex (motor)
2008
BackgroundThe development of the corticospinal tract (CST) in higher vertebrates relies on a series of axon guidance decisions along its long projection pathway. Several guidance molecules are known to be involved at various decision points to regulate the projection of CST axons. However, previous analyses of the CST guidance defects in mutant mice lacking these molecules have suggested that there are other molecules involved in CST axon guidance that are yet to be identified. In this study, we investigate the role of plexin signaling in the guidance of motor CST axons in vivo.ResultsExpression pattern studies show that plexin-A3, plexin-A4, and neuropilin-1 are expressed in the developing cerebral cortex when the motor CST axons originating from layer V cortical neurons are guided down to the spinal cord. By analyzing mutant mice, we show that motor CST axons that turn dorsally to cross the midline at the pyramidal decussation require plexin-A3 and plexin-A4 signaling. Although other CST guidance defects are found in neuropilin-1 mutants, this dorsal turning defect is not observed in either neuropilin-1 or neuropilin-2 mutants, suggesting that the local cues that activate plexin signaling at the dorsal turning point are membrane-bound semaphorins. Further expression pattern study and mutant analysis indicate that Sema6A is one of the local cues for motor CST axon turning at the pyramidal decussation.ConclusionDorsal turning and midline crossing at the pyramidal decussation is a crucial step to properly direct CST axons into the dorsal spinal cord. We show that the signaling of plexin-A3, plexin-A4, and Sema6A is at least partially required for dorsal turning of the CST axons, while neuropilin-1 is required for proper fasciculation of the tract at midline crossing. Together with previous reports, these results demonstrate that several guidance cues are specifically utilized to regulate the dorsal turning and midline crossing of developing CST axons.
Journal Article
Axon Pruning in the Developing Vertebrate Hippocampus
by
Faulkner, Regina L.
,
Low, Lawrence K.
,
Cheng, Hwai-Jong
in
Animals
,
Axons - metabolism
,
Axons - ultrastructure
2007
During early development of the central nervous system (CNS), there is an exuberant outgrowth of projections which later need to be refined to achieve precise connectivity. One widely used strategy for this refinement is axon pruning. Axon pruning has also been suggested to be involved in creating more diverse connection patterns between different species. An understanding of the mechanism of pruning, however, has been elusive in the CNS. Recent studies have focused on a stereotyped pruning event that occurs within the mossy fibers of the developing vertebrate hippocampus. In the following discussion, we will review the cellular and molecular factors that are known to regulate pruning in the hippocampus and highlight some advantages this system presents for future studies on pruning in the developing CNS.
Journal Article