Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
96
result(s) for
"Fay-Wei Li"
Sort by:
On the evolutionary significance of horizontal gene transfers in plants
2020
Horizontal gene transfer (HGT) has long been seen as a crucial process in the evolution of prokaryotic species, but until recently it was thought to have little, if any, effect on the evolution of eukaryotic life forms. Detecting and describing HGT events in eukaryotes is difficult, making this phenomenon at times controversial. However, modern advances in genomics and bioinformatics have radically altered our view of HGT in eukaryotes, especially in plants. It now appears that HGT to and from plant lineages is more common than previously suspected. Importantly, the transfer of functional nuclear genes with adaptive significance has been reported in numerous taxa. Here we review several recent studies that have found evidence of the horizontal transfer of nuclear genes, and argue that HGT has undoubtedly had profound impacts on plant evolution as a whole.
Journal Article
The hornworts
by
Renzaglia, Karen S.
,
Shimamura, Masaki
,
Villarreal, Juan Carlos
in
Agrostis
,
ancestry
,
Anthoceros
2021
Extant land plants consist of two deeply divergent groups, tracheophytes and bryophytes, which shared a common ancestor some 500 million years ago. While information about vascular plants and the two of the three lineages of bryophytes, the mosses and liverworts, is steadily accumulating, the biology of hornworts remains poorly explored. Yet, as the sister group to liverworts and mosses, hornworts are critical in understanding the evolution of key land plant traits. Until recently, there was no hornwort model species amenable to systematic experimental investigation, which hampered detailed insight into the molecular biology and genetics of this unique group of land plants. The emerging hornwort model species, Anthoceros agrestis, is instrumental in our efforts to better understand not only hornwort biology but also fundamental questions of land plant evolution. To this end, here we provide an overview of hornwort biology and current research on the model plant A. agrestis to highlight its potential in answering key questions of land plant biology and evolution.
Journal Article
Next-generation polyploid phylogenetics
2017
Difficulties in generating nuclear data for polyploids have impeded phylogenetic study of these groups. We describe a high-throughput protocol and an associated bioinformatics pipeline (Pipeline for Untangling Reticulate Complexes (PURC)) that is able to generate these data quickly and conveniently, and demonstrate its efficacy on accessions from the fern family Cystopteridaceae. We conclude with a demonstration of the downstream utility of these data by inferring a multi-labeled species tree for a subset of our accessions.
We amplified four c. 1-kb-long nuclear loci and sequenced them in a parallel-tagged amplicon sequencing approach using the PacBio platform. PURC infers the final sequences from the raw reads via an iterative approach that corrects PCR and sequencing errors and removes PCR-mediated recombinant sequences (chimeras).
We generated data for all gene copies (homeologs, paralogs, and segregating alleles) present in each of three sets of 50 mostly polyploid accessions, for four loci, in three PacBio runs (one run per set). From the raw sequencing reads, PURC was able to accurately infer the underlying sequences.
This approach makes it easy and economical to study the phylogenetics of polyploids, and, in conjunction with recent analytical advances, facilitates investigation of broad patterns of polyploid evolution.
Journal Article
Underwater CAM photosynthesis elucidated by Isoetes genome
2021
To conserve water in arid environments, numerous plant lineages have independently evolved Crassulacean Acid Metabolism (CAM). Interestingly,
Isoetes
, an aquatic lycophyte, can also perform CAM as an adaptation to low CO
2
availability underwater. However, little is known about the evolution of CAM in aquatic plants and the lack of genomic data has hindered comparison between aquatic and terrestrial CAM. Here, we investigate underwater CAM in
Isoetes taiwanensis
by generating a high-quality genome assembly and RNA-seq time course. Despite broad similarities between CAM in
Isoetes
and terrestrial angiosperms, we identify several key differences. Notably,
Isoetes
may have recruited the lesser-known ‘bacterial-type’ PEPC, along with the ‘plant-type’ exclusively used in other CAM and C4 plants for carboxylation of PEP. Furthermore, we find that circadian control of key CAM pathway genes has diverged considerably in
Isoetes
relative to flowering plants. This suggests the existence of more evolutionary paths to CAM than previously recognized.
Despite extensive characterization of crassulacean acid metabolism (CAM) in terrestrial angiosperms, little attention has been given to aquatics and early diverging land plants. Here, the authors assemble the genome of
Isoetes taiwanensis
and investigate the genetic factors driving CAM in this aquatic lycophyte.
Journal Article
A guide to sequence your favorite plant genomes
2018
With the rapid development of sequencing technology and the plummeting cost, assembling whole genomes from non‐model plants will soon become routine for plant systematists and evolutionary biologists. Here we summarize and compare several of the latest genome sequencing and assembly approaches, offering a practical guide on how to approach a genome project. We also highlight certain precautions that need to be taken before investing time and money into a genome project.
Journal Article
Charting the genomic landscape of seed-free plants
2021
During the past few years several high-quality genomes has been published from Charophyte algae, bryophytes, lycophytes and ferns. These genomes have not only elucidated the origin and evolution of early land plants, but have also provided important insights into the biology of the seed-free lineages. However, critical gaps across the phylogeny remain and many new questions have been raised through comparing seed-free and seed plant genomes. Here, we review the reference genomes available and identify those that are missing in the seed-free lineages. We compare patterns of various levels of genome and epigenomic organization found in seed-free plants to those of seed plants. Some genomic features appear to be fundamentally different. For instance, hornworts,
Selaginella
and most liverworts are devoid of whole-genome duplication, in stark contrast to other land plants. In addition, the distribution of genes and repeats appear to be less structured in seed-free genomes than in other plants, and the levels of gene body methylation appear to be much lower. Finally, we highlight the currently available (or needed) model systems, which are crucial to further our understanding about how changes in genes translate into evolutionary novelties.
This Review summarizes the available and missing reference genomes in the seed-free plant lineages, compares the genomic and epigenomic features between seed-free and seed plants, and highlights the model systems of seed-free plants.
Journal Article
An Agrobacterium-mediated stable transformation technique for the hornwort model Anthoceros agrestis
by
Szövényi, Péter
,
Gunadi, Andika
,
Van Eck, Joyce
in
Agrobacterium
,
Agrobacterium - genetics
,
Anthoceros
2021
• Despite their key phylogenetic position and their unique biology, hornworts have been widely overlooked. Until recently there was no hornwort model species amenable to systematic experimental investigation. Anthoceros agrestis has been proposed as the model species to study hornwort biology.
• We have developed an Agrobacterium-mediated method for the stable transformation of A. agrestis, a hornwort model species for which a genetic manipulation technique was not yet available.
• High transformation efficiency was achieved by using thallus tissue grown under low light conditions. We generated a total of 274 transgenic A. agrestis lines expressing the β-glucuronidase (GUS), cyan, green, and yellow fluorescent proteins under control of the CaMV 35S promoter and several endogenous promoters. Nuclear and plasma membrane localization with multiple color fluorescent proteins was also confirmed.
• The transformation technique described here should pave the way for detailed molecular and genetic studies of hornwort biology, providing much needed insight into the molecular mechanisms underlying symbiosis, carbon-concentrating mechanism, RNA editing and land plant evolution in general.
Journal Article
Order-level fern plastome phylogenomics
2018
Premise of the Study Filmy ferns (Hymenophyllales) are a highly specialized lineage, having mesophyll one‐cell layer thick and inhabiting particularly shaded and humid environments. The phylogenetic placement of Hymenophyllales has been inconclusive, and while over 87 whole fern plastomes have been published, none was from Hymenophyllales. To better understand the evolutionary history of filmy ferns, we sequenced the first complete plastome for this order. Methods We compiled a phylogenomic plastome data set encompassing all 11 fern orders, and reconstructed phylogenies using different data types (nucleotides, codons, and amino acids) and partition schemes (codon positions and loci). To infer the evolution of fern plastome organization, we coded plastome features, including inversions, inverted repeat boundary shifts, gene losses, and tRNA anticodon sequences as characters, and reconstructed the ancestral states for these characters. Key Results We discovered a suite of novel, Hymenophyllales‐specific plastome structures that likely resulted from repeated expansions and contractions of the inverted repeat regions. Our phylogenetic analyses reveal that Hymenophyllales is highly supported as either sister to Gleicheniales or to Gleicheniales + the remaining non‐Osmundales leptosporangiates, depending on the data type and partition scheme. Conclusions Although our analyses could not confidently resolve the phylogenetic position of Hymenophyalles, the results here highlight the danger of drawing conclusions from “all‐in” phylogenomic data set without exploring potential inconsistencies in the data. Finally, our first order‐level reconstruction of fern plastome structural evolution provides a useful framework for future plastome research.
Journal Article
Large-scale phylogenomic analysis suggests three ancient superclades of the WUSCHEL-RELATED HOMEOBOX transcription factor family in plants
by
Kramer, Elena M.
,
Li, Fay-Wei
,
Wu, Cheng-Chiang
in
Amino Acid Motifs
,
Amino acids
,
Arabidopsis - genetics
2019
The adaptation of plants to land required multiple morphological innovations. Among these include a variety of lateral organs that are initiated from apical meristems, in which the mantainance of undifferentiated stem cells is regulated by the homeodomain WUSCHEL-RELATED (WOX) transcription factors. Expansion of the WOX gene family has been associated with whole genome duplication (WGD) events and postulated to have been pivotal to the evolution of morphological complexity in land plants. Previous studies have classified the WOX gene family into three superclades (e.g., the ancient clade, the intermediate clade, and the modern clade). In order to improve our understanding of the evolution of the WOX gene family, we surveyed the WOX gene sequences from 38 genomes and 440 transcriptomes spanning the Viridiplantae and Rhodophyta. The WOX phylogeny inferred from 1039 WOX proteins drawn from 267 species with improved support along the backbone of the phylogeny suggests that the plant-specific WOX family contains three ancient superclades, which we term Type 1 (T1WOX, the WOX10/13/14 clade), Type 2 (T2WOX, the WOX8/9 and WOX11/12 clades), and Type 3 (T3WOX, the WUS, WOX1/6, WOX2, WOX3, WOX4 and WOX5/7 clades). Divergence of the T1WOX and T2WOX superclades may predate the diversification of vascular plants. Synteny analysis suggests contribution of WGD to expansion of the WOX family. Promoter analysis finds that the capacity of the WOX genes to be regulated by the auxin and cytokinin signaling pathways may be deeply conserved in the Viridiplantae. This study improves our phylogenetic context for elucidating functional evolution of the WOX gene family, which has likely contributed to the morphological complexity of land plants.
Journal Article
NCP activates chloroplast transcription by controlling phytochrome-dependent dual nuclear and plastidial switches
Phytochromes initiate chloroplast biogenesis by activating genes encoding the photosynthetic apparatus, including photosynthesis-associated plastid-encoded genes (
PhAPG
s).
PhAPG
s are transcribed by a bacterial-type RNA polymerase (PEP), but how phytochromes in the nucleus activate chloroplast gene expression remains enigmatic. We report here a forward genetic screen in
Arabidopsis
that identified NUCLEAR CONTROL OF PEP ACTIVITY (NCP) as a necessary component of phytochrome signaling for
PhAPG
activation. NCP is dual-targeted to plastids and the nucleus. While nuclear NCP mediates the degradation of two repressors of chloroplast biogenesis, PIF1 and PIF3, NCP in plastids promotes the assembly of the PEP complex for
PhAPG
transcription. NCP and its paralog RCB are non-catalytic thioredoxin-like proteins that diverged in seed plants to adopt nonredundant functions in phytochrome signaling. These results support a model in which phytochromes control
PhAPG
expression through light-dependent double nuclear and plastidial switches that are linked by evolutionarily conserved and dual-localized regulatory proteins.
Phytochrome signaling in the nucleus can activate expression of photosynthesis-associated genes in plastids. Here Yang et al. show that NCP is a dual-targeted protein that promotes phytochrome B localization to photobodies in the nucleus while facilitating PEP polymerase assembly in the plastids.
Journal Article