Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
35 result(s) for "Fedel, Michele"
Sort by:
Protective Cerium-Based Layered Double Hydroxides Thin Films Developed on Anodized AA6082
In this work, CeMgAl-LDHs protective thin films were developed directly on the anodized aluminum surface, and on the “hot water-sealed” anodized aluminum specimens. The synthesized coatings were investigated by SEM-EDS and XRD and through long-term electrochemical impedance spectroscopy (EIS) spectra. The growth of CeMgAl-LDHs into/onto the micropores/defects of anodized film was found to significantly improve the LDH barrier properties with delaying coating degradation compared to LDHs developed on the “hot water-sealed” surface. The unmodified LDHs “without cerium addition” were also developed to compare the influence of cerium on the structural and electrochemical properties of LDHs. It is also noteworthy that LDHs grown on the anodized surface provided dense and finer growth, while the addition of cerium ions was found to exhibit influential higher long-term corrosion resistance properties after the 1200 h immersion period.
Insight into the Role of Cerium (III) Addition to a MgAl-LDH Coating on AA6082
In this work, Ce doped MgAl-LDHs layers have been developed through an in-situ synthesis method on 6082 aluminum surface. The aim was to gain mechanistic insight into the role of Ce(III) as an active corrosion inhibitor embedded in the LDHs layer. The development of the LDH structure was verified by checking the presence of the characteristic XRD peaks, the platelet morphology (evaluated by SEM-EDXS) and the functional groups (by FTIR-ATR analyses). The same techniques were employed to assess the effect of a prolonged immersion time in 0.1 NaCl on the Ce doped MgAl-LDH coatings. Electrochemical impedance spectroscopy (EIS) was employed to monitor the evolution of the electrochemical properties of the coatings during prolonged immersion in saline solutions. The findings suggest a crystallization/dissolution/precipitation mechanism which implies: (i) the formation of crystalline cerium compounds, such as Ce(OH)3, in the LDH structure during the synthesis; (ii) the dissolution upon exposure to the NaCl solution, thus leading to cerium ions release; (iii) the precipitation of amorphous Ce oxides/hydroxides at the cathodic sites when the metal starts to corrode; (iv), the consequent mitigation of the electrochemical activity of the metal and, thus, the reduction of the extent of corrosion.
In Situ Evaluation of Epoxy Self-Healing Coating by Encapsulated Linseed Oil in Poly(Urea–Formaldehyde–Melamine) Microcapsules
The development of self-healing coatings represents a promising approach to enhance the durability of metal substrates exposed to corrosive environments, demanding thorough in situ investigations. In this study, poly(urea–formaldehyde–melamine) (PUF) microcapsules containing linseed oil (LO) were synthesized via in situ polymerization to act as healing agents in protective coatings. The microcapsules were characterized using scanning electron microscopy (SEM), optical microscopy (OM), Fourier-transform infrared spectroscopy (FTIR), and thermogravimetric analysis (TGA). The capsules exhibited a regular spherical morphology with an average diameter of 96 µm and an LO encapsulation efficiency of 81 wt%. TGA confirmed their thermal stability up to 200 °C, while FTIR verified the successful encapsulation of LO. For performance evaluation, 10 wt% of the microcapsules was incorporated into an epoxy matrix and applied to carbon steel. Corrosion resistance was evaluated using electrochemical impedance spectroscopy (EIS) in 0.1 mol/L of NaCl solution over 500 h. The coating with microcapsules exhibited a |Z|0.01 of 106 Ω·cm2, higher than the 104 Ω·cm2 observed for the coating without microcapsules, indicating improved barrier properties. Raman spectroscopy confirmed the auto-oxidation of LO at damaged areas, evidencing the self-healing mechanism. Although full barrier recovery was not achieved, the system effectively delayed corrosion progression.
Ordering and disordering of in situ grown MgAl-layered double hydroxide and its effect on the structural and corrosion resistance properties
A MgAl-layered double hydroxide (MgAl-LDH) protective film was developed on AA6082 substrates via the in situ hydrothermal growth method to obtain a distinct cauliflower-like LDH structure, and coated substrates were further heat-treated in air at temperatures from 100 to 250°C to further improve the corrosion resistance of MgAl-LDH by taking advantage of the LDH memory effect; also, the effect of calcination on MgAl-LDH structural stability and the corresponding corrosion resistance properties were investigated. The structural characterization of uncalcined and calcined LDH films were examined using scanning electron microscopy, energy-dispersive spectroscopy, X-ray diffraction, thermogravimetric analysis, differential scanning calorimetry, and Fourier transform infrared spectroscopy. The corresponding corrosion protection efficiency of the developed coating was studied through potentiodynamic polarization experiments and by electrochemical impedance spectroscopy. Compared with uncalcined MgAl-LDH, the calcined film showed a relatively lower corrosion current density and a higher impedance value, especially after heat treatment at 250°C. The findings demonstrate that calcination strongly affects the oriented growth of the LDH and causes an increase in the surface area and contraction of the basal spacing, which in turn caused a compact structure that substantially influenced the LDH corrosion resistance properties.
Unlocking the Potential of Sebacate: Investigating Its Role in the Inhibition of Filiform Corrosion on Organic Coated Steel
The study investigated the effect of sebacate as a corrosion inhibitor for acrylic-coated steel. Specifically, it examined its impact on mitigating a frequent case of paint delamination, known as filiform corrosion (FFC), through a chosen weathering test designed to stress the degradation of the produced samples. Sebacate was demonstrated to be an efficient organic molecule for enhancing the corrosion resistance of steel. This efficacy was evaluated through electrochemical characterization based on electrochemical impedance spectroscopy measurements and potentiodynamic polarization curves, including the application of an FFC susceptibility prediction methodology based on measurements obtained in FFC-simulated electrolytes. An inhibition efficiency of 98% was measured in near-neutral saline solutions compared to conditions lacking inhibitor presence. During FFC simulation, the primary effect observed was associated with a reduction in cathodic activity evolution. Furthermore, a significant reduction in corrosion creep evolution of 35% was found. These experimental findings aligned closely with the outcomes projected by the simulated investigations.
Development of Multifunctional CoAl Based Layered Double Hydroxide Protective Film on Aluminum Alloy
A protective CoAl-layered double hydroxide (LDH) thin film was developed directly on the aluminum substrate. Further, the low-surface-energy molecules (1H, 1H, 2H, 2H perfluorododecyl trichlorosilane) were incorporated inside the LDH network through an anion exchange mechanism to obtain a superhydrophobic CoAl-LDH surface. The developed films were characterized by scanning electron microscopy (SEM-EDS), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FT-IR), and additional contact angle measurements were made to evaluate the superhydrophobicity of modified CoAl-LDHs against different solutions. The water contact angle (WCA) of the modified CoAl-LDH surface was observed to be about 153° and remained sufficiently stable after long-term immersion in NaCl solution. The effect of excessive ultrasonication on film structural variations and superhydrophobicity was also analyzed for outdoor applications. The high charge transfer resistance observed from the analysis of long-term electrochemical impedance spectroscopy (EIS) indicates the significant corrosion-resistance properties of the developed CoAl-LDHs. This research on protective CoAl-LDHs will bring insights into the understanding of new aspects of surface protection and implementation in many engineering applications.
Chlorides Entrapment Capability of Various In-Situ Grown NiAl-LDHs: Structural and Corrosion Resistance Properties
In this work, various NiAl-LDH thin films, exhibiting specific surface morphologies, were developed directly on aluminum AA 6082 substrate to understand the two main characteristics of layered double hydroxide (LDH), i.e., ion-exchange behavior and barrier properties, which are found to have a significant influence on the LDH corrosion resistance properties. The as-prepared NiAl-LDH films were analyzed through the scanning electronic microscope (SEM), X-ray diffraction (XRD), while the corrosion behavior of the synthesized films was investigated by the electrochemical impedance spectroscopy (EIS) and potentiodynamic curves. The results indicated that NiAl-LDH microcrystals grow in various fashions, from porous relatively flat domains to well-developed platelet structure, with the variation of nickel nitrate to ammonium nitrate salts molar ratios. The LDH structure is observed in all cases and is found to cover the aluminum surface uniformly in the lamellar order. All the developed NiAl-LDHs are found to enhance the corrosion resistance of the aluminum substrate, specifically, a well-developed platelet structure is found to be more effective in chloride adsorptive and entrapment capabilities, which caused higher corrosion resistance compared to other developed NiAl-LDHs. The comparison of the synthesized NiAl-LDH morphologies on their ion-exchange capabilities, barrier effect and their combined effect on corrosion resistance properties is reported.
Thermal behaviour and weathering resistance of coil coatings for energy-efficient buildings
In recent years, the aspects of energy-savings in buildings have become increasingly important. Coil coatings are frequently used for roof and façade construction in order to reduce the cost, the building time and the maintenance. In recent years different near infrared (NIR) reflectivity pigments have been developed to increase the capability of paint to reflect the sun’s radiation thus minimizing the amount of energy absorbed by the building. Coil coatings containing both traditional and NIR pigments are considered for the assessment of their thermal behaviour. The same painted system produced by three different producers was considered. Using a small scale house model, a W-IR emitting lamp and thermocouples, the amount of energy absorbed by the painted metallic coupons has been evaluated in order to assess the efficiency of the different pigments under investigation. To evaluate effect of ageing, all the different samples were subjected to five accelerated degradation cycles consisting in 168 h of UV-B irradiation followed by 168 h of salt spray exposure. The thermal properties of samples were collected. The cool pigments resulted effective to decrease the heat absorbance (difference between standard and NIR paints up to 18°C). The thermal properties were found not to be affected by degradation.
NIR reflective pigments to mitigate the urban heat islands effect (UHIE)
For building applications, coatings are needed in order to obtain an attractive appearance and protection against the outdoor environments. Buildings are responsible for consumption of cooling energy. Cool coatings applied over buildings surface provide an effective solution for passive cooling of building indoors and influencing local outdoor microclimate, mitigating urban heat islands effect (UHIE). Cool coatings have to resistant to weathering and ageing. For this reason, we developed near infrared (NIR) reflective pigments with the aim to add in binder and obtaining a cool coating. A series of pigments displaying YIn 0.9 Mn 0.1 O 3 –ZnO stoichiometry was synthesized by sol-gel route. The dried gel precursor was calcined at different temperatures for 2h (650°C, 800°C and 850°C) to observe the formation of a light brown pigment and two different blue shades. Precursors and calcined final pigments were characterized by using physicochemical analyses. The colour of pigments was studied using CIE-2004 L * a * b * colorimetric method. The cooling effect of pigments and their thermal stability were confirmed by NIR reflectance measurements and TGA respectively.
Effect of Synthesis Conditions on the Controlled Growth of MgAl–LDH Corrosion Resistance Film: Structure and Corrosion Resistance Properties
In this study, a series of MgAl–layered double hydroxide (LDH) thin films were synthesized by a single step hydrothermal process at different synthetic conditions on AA6082, and the combined effect of reaction temperatures and crystallization times on in situ growth MgAl–LDH structural geometry, growth rate, and more importantly on the corresponding corrosive resistance properties are briefly discussed. The synthesis of LDH was performed at reaction temperatures of 40, 60, 80, and 100 °C, while the treatment time was varied at 12, 18, and 24 h. The as-prepared synthetic coatings were characterized by scanning electron microscopy (SEM), energy dispersion spectroscopy (EDS), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR), while the corresponding corrosion protection efficiency of the developed coating was studied through potentiodynamic polarization studies and electrochemical impedance spectra. The findings demonstrated that extended crystallization time and reaction temperature impart a significant effect on the oriented growth of layered double hydroxide, the surface morphology, and on the film thickness, which had a remarkable influence on the LDH corrosion resistance ability. The LDH coated specimen developed at 100 °C for 18 h reaction time showed a more compact and dense structure compared to the traditional platelet structure obtained at 80 °C for 24 h crystallization time, and interestingly that compact structure exhibited the lowest corrosion current density, up to five orders of magnitude lower than that of bare AA6082.