Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
44 result(s) for "Fedoreyev, Sergey A"
Sort by:
Multifaceted Clinical Effects of Echinochrome
The marine drug histochrome is a special natural antioxidant. The active substance of the drug is echinochrome A (Ech A, 7-ethyl-2,3,5,6,8-pentahydroxy-1,4-naphthoquinone), the most abundant quinonoid pigment in sea urchins. The medicine is clinically used in cardiology and ophthalmology based on the unique properties of Ech A, which simultaneously block various links of free radical reactions. In the last decade, numerous studies have demonstrated the effectiveness of histochrome in various disease models without adverse effects. Here, we review the data on the various clinical effects and modes of action of Ech A in ophthalmic, cardiovascular, cerebrovascular, inflammatory, metabolic, and malignant diseases.
Regulation of Inflammation-Mediated Endothelial to Mesenchymal Transition with Echinochrome a for Improving Myocardial Dysfunction
Endothelial–mesenchymal transition (EndMT) is a process by which endothelial cells (ECs) transition into mesenchymal cells (e.g., myofibroblasts and smooth muscle cells) and induce fibrosis of cells/tissues, due to ischemic conditions in the heart. Previously, we reported that echinochrome A (EchA) derived from sea urchin shells can modulate cardiovascular disease by promoting anti-inflammatory and antioxidant activity; however, the mechanism underlying these effects was unclear. We investigated the role of EchA in the EndMT process by treating human umbilical vein ECs (HUVECs) with TGF-β2 and IL-1β, and confirmed the regulation of cell migration, inflammatory, oxidative responses and mitochondrial dysfunction. Moreover, we developed an EndMT-induced myocardial infarction (MI) model to investigate the effect of EchA in vivo. After EchA was administered once a day for a total of 3 days, the histological and functional improvement of the myocardium was investigated to confirm the control of the EndMT. We concluded that EchA negatively regulates early or inflammation-related EndMT and reduces the myofibroblast proportion and fibrosis area, meaning that it may be a potential therapy for cardiac regeneration or cardioprotection from scar formation and cardiac fibrosis due to tissue granulation. Our findings encourage the study of marine bioactive compounds for the discovery of new therapeutics for recovering ischemic cardiac injuries.
Development of Novel Pharmaceutical Forms of the Marine Bioactive Pigment Echinochrome A Enabling Alternative Routes of Administration
Echinochrome A (EchA), a marine bioactive pigment isolated from various sea urchin species, is the active agent of the clinically approved drug Histochrome®. EchA is currently only available in the form of an isotonic solution of its di- and tri-sodium salts due to its poor water solubility and sensitivity to oxidation. Electrospun polymeric nanofibers have lately emerged as promising drug carriers capable of improving the dissolution and bioavailability of drugs with limited water solubility. In the current study, EchA isolated from sea urchins of the genus Diadema collected at the island of Kastellorizo was incorporated in electrospun micro-/nanofibrous matrices composed of polycaprolactone and polyvinylpyrrolidone in various combinations. The physicochemical properties of the micro-/nanofibers were characterized using SEM, FT-IR, TGA and DSC analyses. The fabricated matrices exhibited variable dissolution/release profiles of EchA, as evidenced in in vitro experiments using gastrointestinal-like fluids (pH 1.2, 4.5 and 6.8). Ex vivo permeability studies using the EchA-loaded micro-/nanofibrous matrices showed an increased permeation of EchA across the duodenum barrier. The results of our study clearly show that electrospun polymeric micro-/nanofibers represent promising carriers for the development of new pharmaceutical formulations with controlled release, as well as increased stability and solubility of EchA, suitable for oral administration, while offering the potential for targeted delivery.
Echinochrome Prevents Sulfide Catabolism-Associated Chronic Heart Failure after Myocardial Infarction in Mice
Abnormal sulfide catabolism, especially the accumulation of hydrogen sulfide (H2S) during hypoxic or inflammatory stresses, is a major cause of redox imbalance-associated cardiac dysfunction. Polyhydroxynaphtoquinone echinochrome A (Ech-A), a natural pigment of marine origin found in the shells and needles of many species of sea urchins, is a potent antioxidant and inhibits acute myocardial ferroptosis after ischemia/reperfusion, but the chronic effect of Ech-A on heart failure is unknown. Reactive sulfur species (RSS), which include catenated sulfur atoms, have been revealed as true biomolecules with high redox reactivity required for intracellular energy metabolism and signal transduction. Here, we report that continuous intraperitoneal administration of Ech-A (2.0 mg/kg/day) prevents RSS catabolism-associated chronic heart failure after myocardial infarction (MI) in mice. Ech-A prevented left ventricular (LV) systolic dysfunction and structural remodeling after MI. Fluorescence imaging revealed that intracellular RSS level was reduced after MI, while H2S/HS− level was increased in LV myocardium, which was attenuated by Ech-A. This result indicates that Ech-A suppresses RSS catabolism to H2S/HS− in LV myocardium after MI. In addition, Ech-A reduced oxidative stress formation by MI. Ech-A suppressed RSS catabolism caused by hypoxia in neonatal rat cardiomyocytes and human iPS cell-derived cardiomyocytes. Ech-A also suppressed RSS catabolism caused by lipopolysaccharide stimulation in macrophages. Thus, Ech-A has the potential to improve chronic heart failure after MI, in part by preventing sulfide catabolism.
Maackia amurensis Rupr. et Maxim.: Supercritical CO2 Extraction and Mass Spectrometric Characterization of Chemical Constituents
Three types of extraction were used to obtain biologically active substances from the heartwood of M. amurensis: supercritical CO2 extraction, maceration with EtOH, and maceration with MeOH. The supercritical extraction method proved to be the most effective type of extraction, giving the highest yield of biologically active substances. Several experimental conditions were investigated in the pressure range of 50–400 bar, with 2% of ethanol as co-solvent in the liquid phase at a temperature in the range of 31–70 °C. The most effective extraction conditions are: pressure of 100 bar and a temperature of 55 °C for M. amurensis heartwood. The heartwood of M. amurensis contains various polyphenolic compounds and compounds of other chemical groups with valuable biological activity. Tandem mass spectrometry (HPLC-ESI—ion trap) was applied to detect target analytes. High-accuracy mass spectrometric data were recorded on an ion trap equipped with an ESI source in the modes of negative and positive ions. The four-stage ion separation mode was implemented. Sixty-six different biologically active components have been identified in M. amurensis extracts. Twenty-two polyphenols were identified for the first time in the genus Maackia.
Effect of Echinochrome A on Submandibular Gland Dysfunction in Ovariectomized Rats
Post-menopausal dry mouth or xerostomia is caused by reduced salivary secretion. This study aimed to investigate the efficacy of echinochrome A (Ech A) in alleviating submandibular gland dysfunctions in ovariectomized rats that mimic menopause. Female rats that were eight-weeks-old were randomly divided into SHAM-6, -12; OVX-6, -12; and ECH-6, -12 groups (consisting of 6- and 12-weeks post-sham-operated, ovariectomized, and Ech A-treated ovariectomized rats, respectively). The ECH groups had lower body weight than OVX but similar food intake and estradiol or estrogen receptor β expression. However, the ECH groups had lower mRNA expression of sterol-regulatory element binding protein-1c (Srebp-1c), acetyl-CoA carboxylase (Acc), fatty acid synthase (Fasn), cluster of differentiation 36 (Cd36), and lipid vacuole deposition than OVX mice. Moreover, reactive oxygen species (ROS), malondialdehyde (MDA), and iron accumulation were lower in the ECH than in the OVX groups. Fibrosis markers, transforming growth factor β (Tgf-βI and Tgf-βII mRNA) increased in the OVX than SHAM groups but decreased in the ECH groups. Aquaporin (Aqp-1 and Aqp-5 mRNA) and mucin expressions were downregulated in the OVX groups but improved with Ech A. In addition, Ech A prevented post-menopausal salivary gland dysfunction by inhibiting lipogenesis and ferroptosis. These findings suggest Ech A as an effective remedy for treating menopausal dry mouth.
Antiviral and Antioxidant Properties of Echinochrome A
The aim of this study was to examine the in vitro antioxidant and antiviral activities of echinochrome A and echinochrome-based antioxidant composition against tick-borne encephalitis virus (TBEV) and herpes simplex virus type 1 (HSV-1). The antioxidant composition, which is a mixture of echinochrome A, ascorbic acid, and α-tocopherol (5:5:1), showed higher antioxidant and antiviral effects than echinochrome A. We suppose that echinochrome A and its composition can both directly affect virus particles and indirectly enhance antioxidant defense mechanisms in the hosting cell. The obtained results allow considering the echinochrome A and the composition of antioxidants on its basis as the promising agents with the both antioxidant and antiviral activities.
Spinochrome D Attenuates Doxorubicin-Induced Cardiomyocyte Death via Improving Glutathione Metabolism and Attenuating Oxidative Stress
Doxorubicin, an anthracycline from Streptomyces peucetius, exhibits antitumor activity against various cancers. However, doxorubicin is cardiotoxic at cumulative doses, causing increases in intracellular reactive oxygen species in the heart. Spinochrome D (SpD) has a structure of 2,3,5,6,8-pentahydroxy-1,4-naphthoquinone and is a structural analogue of well-known sea urchin pigment echinochrome A. We previously reported that echinochrome A is cardioprotective against doxorubicin toxicity. In the present study, we assessed the cardioprotective effects of SpD against doxorubicin and determined the underlying mechanism. 1H-NMR-based metabolomics and mass spectrometry-based proteomics were utilized to characterize the metabolites and proteins induced by SpD in a human cardiomyocyte cell line (AC16) and human breast cancer cell line (MCF-7). Multivariate analyses identified 12 discriminating metabolites (variable importance in projection > 1.0) and 1814 proteins from SpD-treated AC16 cells. Proteomics and metabolomics analyses showed that glutathione metabolism was significantly influenced by SpD treatment in AC16 cells. SpD treatment increased ATP production and the oxygen consumption rate in D-galactose-treated AC16 cells. SpD protected AC16 cells from doxorubicin cytotoxicity, but it did not affect the anticancer properties. With SpD treatment, the mitochondrial membrane potential and mitochondrial calcium localization were significantly different between cardiomyocytes and cancer cell lines. Our findings suggest that SpD could be cardioprotective against the cytotoxicity of doxorubicin.
Echinochrome A Prevents Diabetic Nephropathy by Inhibiting the PKC-Iota Pathway and Enhancing Renal Mitochondrial Function in db/db Mice
Echinochrome A (EchA) is a natural bioproduct extracted from sea urchins, and is an active component of the clinical drug, Histochrome®. EchA has antioxidant, anti-inflammatory, and antimicrobial effects. However, its effects on diabetic nephropathy (DN) remain poorly understood. In the present study, seven-week-old diabetic and obese db/db mice were injected with Histochrome (0.3 mL/kg/day; EchA equivalent of 3 mg/kg/day) intraperitoneally for 12 weeks, while db/db control mice and wild-type (WT) mice received an equal amount of sterile 0.9% saline. EchA improved glucose tolerance and reduced blood urea nitrogen (BUN) and serum creatinine levels but did not affect body weight. In addition, EchA decreased renal malondialdehyde (MDA) and lipid hydroperoxide levels, and increased ATP production. Histologically, EchA treatment ameliorated renal fibrosis. Mechanistically, EchA suppressed oxidative stress and fibrosis by inhibiting protein kinase C-iota (PKCι)/p38 mitogen-activated protein kinase (MAPK), downregulating p53 and c-Jun phosphorylation, attenuating NADPH oxidase 4 (NOX4), and transforming growth factor-beta 1 (TGFβ1) signaling. Moreover, EchA enhanced AMPK phosphorylation and nuclear factor erythroid-2-related factor 2 (NRF2)/heme oxygenase 1 (HO-1) signaling, improving mitochondrial function and antioxidant activity. Collectively, these findings demonstrate that EchA prevents DN by inhibiting PKCι/p38 MAPK and upregulating the AMPKα/NRF2/HO-1 signaling pathways in db/db mice, and may provide a therapeutic option for DN.
Echinochrome A Reverses Kidney Abnormality and Reduces Blood Pressure in a Rat Model of Preeclampsia
We aimed to observe the effects of Echinochrome A (Ech A) on systemic changes using a rat model of preeclampsia. The results showed that an infusion of angiotensin II (Ang II) through an osmotic pump (1 μg/kg/min) on GD 8 increased systolic and diastolic blood pressures and reduced fetal weight and placental weight. The diameters of the glomeruli were expended and glomeruli capillaries were diminished. No change was observed in the heart and liver in the Ang II group, but epithelial structures were disrupted in the uterus. Ech A treatment on GD 14 (100 μg/μL) through the jugular vein reduced systolic and diastolic blood pressures and reversed glomerulus alterations, but the fetal or placental parameters were unaffected. Ech A only partly reversed the effect on the uterus. The mRNA expression of TNF–α was increased and IL–10 and VEGF were reduced in the uterus of the Ang II group, while Ech A restored these changes. A similar trend was observed in the kidney, liver, and heart of this group. Furthermore, Bcl–2 was reduced and Bcl–2/Bax ratios were significantly reduced in the kidney and heart of the Ang II group, while Ech A reversed these changes. We suggest that Ech A modulates inflammation and apoptosis in key systemic organs in Ang II-induced rat preeclampsia and preserves kidney and uterus structures and reduces blood pressure.