Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
66 result(s) for "Feng, Shiqian"
Sort by:
Declining Lake Water Levels and Suitable Wind Conditions Promote Locust Outbreaks and Migration in the Kazakhstan–China Area
Outbreaks of locust plagues are becoming increasingly frequent against the backdrop of climate change. Locust outbreaks in the Caucasus and Central Asia, especially in Kazakhstan, pose continuous threats to neighboring countries, including China, Kyrgyzstan, and more. However, locust outbreak forecasts and migration movement are yet to be studied in this area. In our study, we collected water level data in major lakes and water bodies, as well as annual average precipitation in the past 15 years in Kazakhstan, to analyze their contributions to locust outbreaks. Multiple linear regression analysis revealed a significant negative correlation between overall lake water level and the following year’s locust outbreak area in Kazakhstan. Considering that the overall lake water levels in 2023 and 2024 reached a quite low level historically, we predicted heavy locust outbreaks in 2025. Furthermore, through wind field analysis and wind-born trajectory modeling, we identified two migration routes of locusts from Kazakhstan into Xinjiang, China, riding the northwest wind, with lakes near the Sino-Kazakhstan border as the main sources. Overall, our study identified high locust outbreak challenges in Kazakhstan in recent years and determined two wind-supported migration routes of locusts invading China, which are significant for guiding monitoring and prevention efforts in the Sino-Kazakhstan border area.
Fragmentation in mitochondrial genomes in relation to elevated sequence divergence and extreme rearrangements
Background A single circular mitochondrial (mt) genome is a common feature across most metazoans. The mt-genome includes protein-coding genes involved in oxidative phosphorylation, as well as RNAs necessary for translation of mt-RNAs, whose order and number are highly conserved across animal clades, with few known exceptions of alternative mt-gene order or mt-genome architectures. One such exception consists of the fragmented mitochondrial genome, a type of genome architecture where mt-genes are split across two or more mt-chromosomes. However, the origins of mt-genome fragmentation and its effects on mt-genome evolution are unknown. Here, we investigate these origin and potential mechanisms underlying mt-genome fragmentation, focusing on a genus of booklice, Liposcelis , which exhibits elevated sequence divergence, frequent rearrangement of mt-gene order, and fragmentation of the mt genome, and compare them to other Metazoan clades. Results We found this genus Liposcelis exhibits very low conservation of mt-gene order across species, relative to other metazoans. Levels of gene order rearrangement were, however, unrelated to whether or not mt-genomes were fragmented or intact, suggesting mitochondrial genome fragmentation is not affecting mt-gene order directly. We further investigated possible mechanisms underpinning these patterns and revealed very high conservation of non-coding sequences at the edges of multiple recombination regions across populations of one particular Liposcelis species, supportive of a hypothesis that mt-fragmentation arises from recombination errors between mt-genome copies. We propose these errors may arise as a consequence of a heightened mutation rate in clades exhibiting mt-fragmentation. Consistent with this, we observed a striking pattern across three Metazoan phyla (Arthropoda, Nematoda, Cnidaria) characterised by members exhibiting high levels of mt-gene order rearrangement and cases of mt-fragmentation, whereby the mt-genomes of species more closely related to species with fragmented mt-genomes diverge more rapidly despite experiencing strong purifying selection. Conclusions We showed that contrary to expectations, mt-genome fragmentation is not correlated with the increase in mt-genome rearrangements. Furthermore, we present evidence that fragmentation of the mt-genome may be part of a general relaxation of a natural selection on the mt-genome, thus providing new insights into the origins of mt-genome fragmentation and evolution.
Mitochondrial Genomes Reveal Population Structure of the Locust Oedaleus decorus in China
The locust Oedaleus decorus undergoes massive outbreaks and engages in round-trip migratory flights across northern China and Mongolia. However, its specific genetic structure remains poorly understood. In this study, we sequenced the complete mitochondrial genomes of 163 O. decorus individuals from 16 locations in northern China using high-throughput sequencing data and analyzed its population structure. The results showed that these mitochondrial genomes are 15,142 to 15,914 bp in sizes, with size variation attributed to A + T-rich regions in intergenic spacers. All 13 protein-coding genes exhibited conserved lengths across samples. The overall genetic differentiation between populations was small (Fst = 0.00843), with high gene flow (Nm = 29.40). Both genetic differentiation and DAPC analyses revealed significant genetic differentiation in the New Barag Left Banner (NBL) population compared to the Zhengxiangbai Banner (ZB), Taibus Banner (TP), Xianghuang Banner (XH), and Zhenglan Banner (ZL) populations. The phylogenetic tree and haplotype network suggest Hap_20 is presumably a relatively ancestral haplotype and all haplotypes were divided into two clades, and no population formed a distinct independent clade. Our findings indicate that the O. decorus population in North China exhibits mitochondrial subtype differentiation. The lack of difference in genetic structure across different regions in North China is consistent with a high level of migratory activity by O. decorus in the region.
Identification, characterization and spatiotemporal expression analysis of the FKBP family genes in Locusta migratoria
FK506 binding proteins (FKBPs) are a highly-conserved group of proteins known to bind to FK506, an immunosuppressive drug. They play different physiological roles, including transcription regulation, protein folding, signal transduction and immunosuppression. A number of FKBP genes have been identified in eukaryotes; however, very little information about these genes has been reported in Locusta migratoria . Here, we identified and characterized 10 FKBP genes from L. migratoria . Phylogenetic analysis and comparison of domain architectures indicated that the LmFKBP family can be divided into two subfamilies and five subclasses. Developmental and tissue expression pattern analysis revealed that all LmFKBPs transcripts, including LmFKBP46 , LmFKBP12 , LmFKBP47 , LmFKBP79 , LmFKBP16 , LmFKBP24 , LmFKBP44b , LmFKBP53 , were periodically expressed during different developmental stages and mainly expressed in the fat body, hemolymph, testis, and ovary. In brief, our work depicts a outline but panoramic picture of LmFKBP family in L. migratoria , and provides a solid foundation to further investigate the molecular functions of LmFKBPs .
Intercontinental Migration Facilitates Continuous Occurrence of the Desert Locust Schistocerca gregaria (Forsk., 1775) in Africa and Asia
The desert locust, Schistocerca gregaria (Forsk., 1775), stands as one of the most pervasive pests globally, inflicting extensive damage across Asia and Africa. Facilitated by intercontinental migration, the desert locust engages in population exchange between different source areas, perpetuating its widespread proliferation. Despite the wind being recognized as a key factor during migration events, elucidating its precise influence on intercontinental migration has remained elusive. In this study, we scrutinized monitoring data sourced from the FAO monitoring system, pinpointing 13 desert locust events featuring intercontinental migrations since 1967. From these events, four migration routes were summarized, traversing the Red Sea (RS-WE and RS-EW) and the northern Indian Ocean (IO-WE and IO-EW). Typically, RS-WE and IO-EW migrations occurred between December and March, whereas RS-EW and IO-WE migrations were observed from May to June and April to July, respectively. Our examination of wind field data spanning the past 15 years revealed that wind direction and speed facilitated intercontinental migrations. Furthermore, migration trajectory modeling indicated that desert locusts might exhibit migratory behavior both during the day and at night in the cases of RS-WE and RS-EW, with cross-oceanic migration potentially lasting for a week for IO-WE and IO-EW. In summary, our study identifies four migration routes for the intercontinental migration of the desert locust, providing crucial support for the scientific prediction of its occurrence and contributing to international food security efforts.
The Highly Divergent Mitochondrial Genomes Indicate That the Booklouse, Liposcelis bostrychophila (Psocoptera: Liposcelididae) Is a Cryptic Species
The booklouse, Liposcelis bostrychophila is an important storage pest worldwide. The mitochondrial (mt) genome of an asexual strain (Beibei, China) of the L. bostrychophila comprises two chromosomes; each chromosome contains approximate half of the 37 genes typically found in bilateral animals. The mt genomes of two sexual strains of L. bostrychophila, however, comprise five and seven chromosomes, respectively; each chromosome contains one to six genes. To understand mt genome evolution in L. bostrychophila, and whether L. bostrychophila is a cryptic species, we sequenced the mt genomes of six strains of asexual L. bostrychophila collected from different locations in China, Croatia, and the United States. The mt genomes of all six asexual strains of L. bostrychophila have two chromosomes. Phylogenetic analysis of mt genome sequences divided nine strains of L. bostrychophila into four groups. Each group has a distinct mt genome organization and substantial sequence divergence (48.7–87.4%) from other groups. Furthermore, the seven asexual strains of L. bostrychophila, including the published Beibei strain, are more closely related to two other species of booklice, L. paeta and L. sculptilimacula, than to the sexual strains of L. bostrychophila. Our results revealed highly divergent mt genomes in the booklouse, L. bostrychophila, and indicate that L. bostrychophila is a cryptic species.
An advanced approach for rapid visual identification of Liposcelis bostrychophila (Psocoptera: Liposcelididae) based on CRISPR/Cas12a combined with RPA
Liposcelis bostrychophila Badonnel (Psocoptera: Liposcelididae) is a booklouse pest that is a threat to commodity storage security worldwide. Accurate and sensitive methods of L. bostrychophila on-site identification are essential prerequisites for its effective management. Evidence suggests that L. bostrychophila contains 3 intraspecific biotypes that are morphologically indistinguishable but can be discriminated at the level of mitochondrial genome organization and sequences. The traditional molecular identification methods, such as DNA barcoding and PCR-RFLP, are instrumentally demanding and time-consuming, limiting the application of the identification in the field. Therefore, this study developed a new CRISPR/Cas12a-based visual nucleic acid system based on the mitochondrial gene coding for NADH dehydrogenase subunit 2 (nad2), combined with recombinase polymerase amplification (RPA) to accurately identify L. bostrychophila from 4 other common stored-product booklice, and also differentiate 3 biotypes of this species at the same time. The entire identification process could be completed at 37 °C within 20 min with high sensitivity. The system could stably detect at least 1 ng/µl of DNA template. The green fluorescence signal produced by the trans-cleaving of the single-stranded DNA reporter could be observed by the naked eye under blue light. Additionally, the suggested system combined with the crude DNA extraction method to extract DNA rapidly, enabled identification of all developmental stages of L. bostrychophila. With crude DNA, this novel diagnostic system successfully identified an unknown booklouse by holding the reaction tubes in the hand, thus can be considered as an accurate, rapid, highly sensitive, and instrument-flexible method for on-site visual identification of L. bostrychophila.
Study on the Evaluation of the Development Efficiency of Smart Mine Construction and the Influencing Factors Based on the US-SBM Model
Taking the panel data of 13 provinces (autonomous regions and municipalities directly under the central government) in Shanxi and Xinjiang from 2011 to 2020 as the research object, we establish an evaluation index system for assessing smart mine construction development efficiency combined with the global reference method. The non-desired output super-efficiency slacks-based measure and the kernel density model were used to measure the development efficiency of smart mine construction and spatial structure evolution characteristics. This study explores the internal and external factors affecting the efficiency in various regions using the Tobit regression model. After conducting the analysis, the study obtained four main findings: (1) the development efficiency is influenced by the level of technology, and the overall level is low; (2) there are spatially heterogeneous and agglomerative characteristics, with large differences in regional distribution; (3) personnel is the main factor causing the phenomenon of severe redundancy in the region; and (4) the level of regional economic development, industrial structure, and the degree of government intervention are the main external factors that have a positive impact.
The relationship between taxonomic classification and applied entomology: stored product pests as a model group
Taxonomy provides a general foundation for research on insects. Using stored product pest (SPP) arthropods as a model group, this article overviews the historical impacts of taxonomy on applied entomology. The article surveys the dynamics of historical descriptions of new species in various SPP taxa; the majority of all species (90%) were described prior to 1925, while the key pests were described prior to 1866. The review shows that process of describing new SPP species is not random but is influenced by following factors: (i) larger species tend to be described earlier than smaller and SPP moths and beetles are described earlier than psocids and mites; (ii) key economic pests are on average described earlier than less significant ones. Considering a species name as a “password” to unique information resources, this review also assesses the historical number of synonymous or duplicate names of SPP species. Pests belonging to some higher taxa Lepidoptera and Coleoptera has accumulated more scientific synonyms than those others belonging to Psocoptera and Acari. Number of synonyms positively correlated with the economic importance of SPP species. The review summarized semantic origin of SPP names showing minor proportion of names (17.6%) are toponyms (geography) or eponyms (people), while the majority (82.4%) fall into other categories (descriptive, etc.). It is concluded that awareness of taxonomic advances, including changes to species and higher taxa names, should be effectively communicated to pest control practitioners and applied entomology students, and specifically addressed in relevant textbooks, web media, and databases.
Adapting distribution patterns of desert locusts, Schistocerca gregaria in response to global climate change
The desert locust ( Schistocerca gregaria ) is a destructive migratory pest, posing great threat to over 60 countries globally. In the backdrop of climate change, the habitat suitability of desert locusts is poised to undergo alterations. Hence, investigating the shifting dynamics of desert locust habitats holds profound significance in ensuring global agricultural resilience and food security. In this study, we combined the maximum entropy modelling and geographic information system technology to conduct a comprehensive analysis of the impact of climate change on the distribution patterns and habitat adaptability of desert locusts. The results indicate that the suitable areas for desert locusts (0.2976 × 10 8 km 2 ) are concentrated in northern Africa and southwestern Asia, accounting for 19.97% of the total global land area. Key environmental variables affecting the desert locust distribution include temperature annual range, mean temperature of the coldest quarter, average temperature of February, and precipitation of the driest month. Under the SSP1–2.6 and SSP5–8.5 climate scenarios, potential suitable areas for desert locusts are estimated to increase from 2030 (2021–2040) to 2090 (2081–2100). By 2090, highly suitable areas for SSP1–2.6 and SSP5–8.5 are projected to be 0.0606 × 10 8 and 0.0891 × 10 8 km 2 , respectively, reflecting an expansion of 1.84 and 2.77% compared to existing ones. These research findings provide a theoretical basis for adopting prevention and control strategies for desert locusts.