Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
29
result(s) for
"Fengqiu Adam Dong"
Sort by:
Sub-second periodicity in a fast radio burst
by
Shaw, J. Richard
,
Lin, Hsiu-Hsien
,
Singh, Saurabh
in
639/33/34/4118
,
639/33/34/4121
,
639/33/34/4127
2022
Fast radio bursts (FRBs) are millisecond-duration flashes of radio waves that are visible at distances of billions of light years. The nature of their progenitors and their emission mechanism remain open astrophysical questions. Here we report the detection of the multicomponent FRB 20191221A and the identification of a periodic separation of 216.8(1) ms between its components, with a significance of 6.5σ. The long (roughly 3 s) duration and nine or more components forming the pulse profile make this source an outlier in the FRB population. Such short periodicity provides strong evidence for a neutron-star origin of the event. Moreover, our detection favours emission arising from the neutron-star magnetosphere, as opposed to emission regions located further away from the star, as predicted by some models.
Journal Article
A pulsar-like polarization angle swing from a nearby fast radio burst
by
Kirichenko, Aida
,
Eftekhari, Tarraneh
,
Bhardwaj, Mohit
in
639/33/34/4118
,
639/33/34/4127
,
639/33/34/864
2025
Fast radio bursts (FRBs) last for milliseconds and arrive at Earth from cosmological distances. Although their origins and emission mechanisms are unknown, their signals bear similarities with the much less luminous radio emission generated by pulsars within our Miky Way Galaxy
1
, with properties suggesting neutron star origins
2
,
3
. However, unlike pulsars, FRBs typically show minimal variability in their linear polarization position angle (PA) curves
4
. Even when marked PA evolution is present, their curves deviate significantly from the canonical shape predicted by the rotating vector model (RVM) of pulsars
5
. Here we report on FRB 20221022A, detected by the Canadian Hydrogen Intensity Mapping Experiment Fast Radio Burst project (CHIME/FRB) and localized to a nearby host galaxy (about 65 Mpc), MCG+14-02-011. This FRB shows a notable approximately 130° PA rotation over its about 2.5 ms burst duration, resembling the characteristic S-shaped evolution seen in many pulsars and some radio magnetars. The observed PA evolution supports magnetospheric origins
6
,
7
–
8
over models involving distant shocks
9
,
10
–
11
, echoing similar conclusions drawn from tempo-polarimetric studies of some repeating FRBs
12
,
13
. The PA evolution is well described by the RVM and, although we cannot determine the inclination and magnetic obliquity because of the unknown period or duty cycle of the source, we exclude very short-period pulsars (for example, recycled millisecond pulsars) as the progenitor.
FRB 20221022A, detected by the Canadian Hydrogen Intensity Mapping Experiment Fast Radio Burst project, shows a pronounced change in polarization during the burst, providing important clues into the nature of the source.
Journal Article
Constraining the selection corrected luminosity function and total pulse count for radio transients
by
Good, Deborah
,
Meyers, Bradley W
,
Mckee, James W
in
Algorithms
,
Bayesian analysis
,
Luminosity
2024
Studying transient phenomena, such as individual pulses from pulsars, has garnered considerable attention in the era of astronomical big data. Of specific interest to this study are Rotating Radio Transients (RRATs), nulling, and intermittent pulsars. This study introduces a new algorithm named LuNfit, tailored to correct the selection biases originating from the telescope and detection pipelines. Ultimately LuNfit estimates the intrinsic luminosity distribution and nulling fraction of the single pulses emitted by pulsars. LuNfit relies on Bayesian nested sampling so that the parameter space can be fully explored. Bayesian nested sampling also provides the additional benefit of simplifying model comparisons through the Bayes ratio. The robustness of LuNfit is shown through simulations and applying LuNfit onto pulsars with known nulling fractions. LuNfit is then applied to three RRATs, J0012+5431, J1538+1523, and J2355+1523, extracting their intrinsic luminosity distribution and burst rates. We find that their nulling fraction is 0.4(2), 0.749(5) and 0.995(2) respectively. We further find that a log-normal distribution likely describes the single pulse luminosity distribution of J0012+5431 and J1538+1523, while the Bayes ratio for J2355+1523 slightly favors an exponential distribution. We show the conventional method of correcting selection effects by \"scaling up\" the missed fraction of radio transients can be unreliable when the mean luminosity of the source is faint relative to the telescope sensitivity. Finally, we discuss the limitations of the current implementation of LuNfit while also delving into potential enhancements that would enable LuNfit to be applied to sources with complex pulse morphologies.
Multiwavelength Constraints on the Origin of a Nearby Repeating Fast Radio Burst Source in a Globular Cluster
2024
The precise origins of fast radio bursts (FRBs) remain unknown. Multiwavelength observations of nearby FRB sources can provide important insights into the enigmatic FRB phenomenon. Here, we present results from a sensitive, broadband X-ray and radio observational campaign of FRB 20200120E, the closest known extragalactic repeating FRB source (located 3.63 Mpc away in an ~10-Gyr-old globular cluster). We place deep limits on the persistent and prompt X-ray emission from FRB 20200120E, which we use to constrain possible origins for the source. We compare our results with various classes of X-ray sources, transients, and FRB models. We find that FRB 20200120E is unlikely to be associated with ultraluminous X-ray bursts, magnetar-like giant flares, or an SGR 1935+2154-like intermediate flare. Although other types of bright magnetar-like intermediate flares and short X-ray bursts would have been detectable from FRB 20200120E during our observations, we cannot entirely rule them out as a class. We show that FRB 20200120E is unlikely to be powered by an ultraluminous X-ray source or a young extragalactic pulsar embedded in a Crab-like nebula. We also provide new constraints on the compatibility of FRB 20200120E with accretion-based FRB models involving X-ray binaries. These results highlight the power of multiwavelength observations of nearby FRBs for discriminating between FRB models.
Limits on Fast Radio Burst-like Counterparts to Gamma-ray Bursts using CHIME/FRB
by
Scholz, Paul
,
Pleunis, Ziggy
,
Bhardwaj, Mohit
in
Gamma ray bursts
,
Radio bursts
,
Radio emission
2023
Fast Radio Bursts (FRBs) are a class of highly energetic, mostly extragalactic radio transients lasting for a few milliseconds. While over 600 FRBs have been published so far, their origins are presently unclear, with some theories for extragalactic FRBs predicting accompanying high-energy emission. In this work, we use the Canadian Hydrogen Intensity Mapping Experiment (CHIME) Fast Radio Burst (CHIME/FRB) Project to explore whether any FRB-like radio emission coincides in space and time with 81 gamma-ray bursts (GRBs) detected between 2018 July 17 and 2019 July 8 by Swift/BAT and Fermi/GBM. We do not find any statistically significant, coincident pairs within 3sigma of each other's spatial localization regions and within a time difference of up to one week. In addition to searching for spatial matches between known FRBs and known GRBs, we use CHIME/FRB to constrain FRB-like radio emission before, at the time of, or after the reported high-energy emission at the position of 39 GRBs. Our most constraining radio flux limits in the 400- to 800-MHz band for short gamma-ray bursts (SGRBs) are <50 Jy at 18.6 ks pre-high-energy emission, and <5 Jy at 28.4 ks post-high-energy emission, assuming a 10-ms radio burst width with each limit valid for 60 seconds. We use these limits to constrain models that predict FRB-like prompt radio emission before and after SGRBs. We also place limits as low as 2 Jy for long gamma-ray bursts (LGRBs), but there are no strong theoretical predictions for coincident FRB-like radio emission for LGRBs.
Multiwavelength constraints on the origin of a nearby repeating fast radio burst source in a globular cluster
by
Eftekhari, Tarraneh
,
Fonseca, Emmanuel
,
Bhardwaj, Mohit
in
639/33/34/4118
,
639/33/34/4121
,
639/33/34/4127
2025
The precise origins of fast radio bursts (FRBs) remain unknown. Multiwavelength observations of nearby FRB sources can provide important insights into the enigmatic FRB phenomenon. Here we present results from a sensitive, broadband X-ray and radio observational campaign of FRB 20200120E, the closest known extragalactic repeating FRB source (located 3.63 Mpc away in an ~10-Gyr-old globular cluster). We place deep limits on the persistent and prompt X-ray emission from FRB 20200120E, which we use to constrain possible origins for the source. We compare our results with various classes of X-ray sources, transients and FRB models. We find that FRB 20200120E is unlikely to be associated with ultraluminous X-ray bursts, magnetar-like giant flares or an SGR 1935+2154-like intermediate flare. Although other types of bright magnetar-like intermediate flares and short X-ray bursts would have been detectable from FRB 20200120E during our observations, we cannot entirely rule them out as a class. We show that FRB 20200120E is unlikely to be powered by an ultraluminous X-ray source or a young extragalactic pulsar embedded in a Crab-like nebula. We also provide new constraints on the compatibility of FRB 20200120E with accretion-based FRB models involving X-ray binaries. These results highlight the power of multiwavelength observations of nearby FRBs for discriminating between FRB models.
Deep X-ray limits are placed on the source of the closest fast radio burst, FRB 20200120E, ruling out an ultraluminous X-ray source or a young extragalactic pulsar embedded in a Crab-like nebula as its origin.
Journal Article
The second set of pulsar discoveries by CHIME/FRB/Pulsar: 14 Rotating Radio Transients and 7 pulsars
2023
The Canadian Hydrogen Mapping Experiment (CHIME) is a radio telescope located in British Columbia, Canada. The large FOV allows CHIME/FRB to be an exceptional pulsar and Rotating Radio Transient (RRAT) finding machine, despite saving only the metadata of incoming Galactic events. We have developed a pipeline to search for pulsar/RRAT candidates using DBSCAN, a clustering algorithm. Follow-up observations are then scheduled with the more sensitive CHIME/Pulsar instrument capable of near-daily high time resolution spectra observations. We have developed the CHIME/Pulsar Single Pulse Pipeline to automate the processing of CHIME/Pulsar search-mode data. We report the discovery of 21 new Galactic sources, with 14 RRATs, 6 isolated long-period pulsars and 1 binary system. Owing to CHIME/Pulsar's observations we have obtained timing solutions for 8 of the 14 RRATs along with all the regular pulsars and the binary system. Notably we report that the binary system is in a long orbit of 412 days with a minimum companion mass of 0.1303 solar masses and no evidence of an optical companion within 10\" of the pulsar position. This highlights that working synergistically with CHIME/FRB's large survey volume CHIME/Pulsar can obtain arc second localisations for low burst rate RRATs though pulsar timing. We find that the properties of our newly discovered RRATs are consistent with those of the presently known population. They tend to have lower burst rates than those found in previous surveys, which is likely due to survey bias rather than the underlying population.
A fast radio burst localized at detection to an edge-on galaxy using very-long-baseline interferometry
by
Lin, Hsiu-Hsien
,
Breitman, Daniela
,
Bhardwaj, Mohit
in
639/33/34/2810
,
639/33/34/4127
,
Astronomy
2024
NRC publication: Yes
Journal Article
A fast radio burst localized at detection to an edge-on galaxy using very-long-baseline interferometry
by
Lin, Hsiu-Hsien
,
Patel, Chitrang
,
Breitman, Daniela
in
Astronomical models
,
Faraday effect
,
Galactic disk
2024
Fast radio bursts (FRBs) are millisecond-duration, luminous radio transients of extragalactic origin. These events have been used to trace the baryonic structure of the Universe using their dispersion measure (DM) assuming that the contribution from host galaxies can be reliably estimated. However, contributions from the immediate environment of an FRB may dominate the observed DM, thus making redshift estimates challenging without a robust host galaxy association. Furthermore, while at least one Galactic burst has been associated with a magnetar, other localized FRBs argue against magnetars as the sole progenitor model. Precise localization within the host galaxy can discriminate between progenitor models, a major goal of the field. Until now, localizations on this spatial scale have only been carried out in follow-up observations of repeating sources. Here we demonstrate the localization of FRB 20210603A with very long baseline interferometry (VLBI) on two baselines, using data collected only at the time of detection. We localize the burst to SDSS J004105.82+211331.9, an edge-on galaxy at \\(z\\approx 0.177\\), and detect recent star formation in the kiloparsec-scale vicinity of the burst. The edge-on inclination of the host galaxy allows for a unique comparison between the line of sight towards the FRB and lines of sight towards known Galactic pulsars. The DM, Faraday rotation measure (RM), and scattering suggest a progenitor coincident with the host galactic plane, strengthening the link between the environment of FRB 20210603A and the disk of its host galaxy. Single-pulse VLBI localizations of FRBs to within their host galaxies, following the one presented here, will further constrain the origins and host environments of one-off FRBs.
Inferring the Energy and Distance Distributions of Fast Radio Bursts using the First CHIME/FRB Catalog
by
Merryfield, Marcus
,
Bhardwaj, Mohit
,
Fonseca, Emmanuel
in
Astronomical models
,
Emission analysis
,
Luminosity
2023
Fast radio bursts (FRBs) are brief, energetic, extragalactic flashes of radio emission whose progenitors are largely unknown. Although studying the FRB population is essential for understanding how these astrophysical phenomena occur, such studies have been difficult to conduct without large numbers of FRBs and characterizable observational biases. Using the recently released catalog of 536 FRBs published by the Canadian Hydrogen Intensity Mapping Experiment/Fast Radio Burst (CHIME/FRB) collaboration, we present a study of the FRB population that also calibrates for selection effects. Assuming a Schechter luminosity function, we infer a characteristic energy cut-off of \\(E_\\mathrm{char} =\\) \\(2.38^{+5.35}_{-1.64} \\times 10^{41}\\) erg and a differential power-law index of \\(\\gamma =\\) \\(-1.3^{+0.7}_{-0.4}\\). Simultaneously, we infer a volumetric rate of [\\(7.3^{+8.8}_{-3.8}\\)(stat.)\\(^{+2.0}_{-1.8}\\)(sys.)]\\(\\times 10^4\\) Gpc\\(^{-3}\\) year\\(^{-1}\\) above a pivot energy of 10\\(^{39}\\) erg and below a scattering timescale of 10 ms at 600 MHz, and find we cannot significantly constrain the cosmic evolution of the FRB population with star formation rate. Modeling the host dispersion measure (DM) contribution as a log-normal distribution and assuming a total Galactic contribution of 80 pc cm\\(^{-3}\\), we find a median value of \\(\\mathrm{DM}_\\mathrm{host} =\\) \\(84^{+69}_{-49}\\) pc cm\\(^{-3}\\), comparable with values typically used in the literature. Proposed models for FRB progenitors should be consistent with the energetics and abundances of the full FRB population predicted by our results. Finally, we infer the redshift distribution of FRBs detected with CHIME, which will be tested with the localizations and redshifts enabled by the upcoming CHIME/FRB Outriggers project.