Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
LanguageLanguage
-
SubjectSubject
-
Item TypeItem Type
-
DisciplineDiscipline
-
YearFrom:-To:
-
More FiltersMore FiltersIs Peer Reviewed
Done
Filters
Reset
333
result(s) for
"Ferrante, Antonio"
Sort by:
Biostimulants Application in Horticultural Crops under Abiotic Stress Conditions
by
Franzoni, Giulia
,
Ferrante, Antonio
,
Bulgari, Roberta
in
Abiotic stress
,
Agricultural production
,
Agriculture
2019
Abiotic stresses strongly affect plant growth, development, and quality of production; final crop yield can be really compromised if stress occurs in plants’ most sensitive phenological phases. Additionally, the increase of crop stress tolerance through genetic improvements requires long breeding programmes and different cultivation environments for crop performance validation. Biostimulants have been proposed as agronomic tools to counteract abiotic stress. Indeed, these products containing bioactive molecules have a beneficial effect on plants and improve their capability to face adverse environmental conditions, acting on primary or secondary metabolism. Many companies are investing in new biostimulant products development and in the identification of the most effective bioactive molecules contained in different kinds of extracts, able to elicit specific plant responses against abiotic stresses. Most of these compounds are unknown and their characterization in term of composition is almost impossible; therefore, they could be classified on the basis of their role in plants. Biostimulants have been generally applied to high-value crops like fruits and vegetables; thus, in this review, we examine and summarise literature on their use on vegetable crops, focusing on their application to counteract the most common environmental stresses.
Journal Article
Biostimulants on Crops: Their Impact under Abiotic Stress Conditions
by
Franzoni, Giulia
,
Ferrante, Antonio
,
Espen, Luca
in
Abiotic stress
,
abiotic stresses
,
Agricultural production
2022
Biostimulants are agronomic tools that have been gaining importance in the reduction of fertilizer applications. They can improve the yield of cropping systems or preventing crop yield losses under abiotic stresses. Biostimulants can be composed of organic and inorganic materials and most of the components are still unknown. The characterization of the molecular mechanism of action of biostimulants can be obtained using the omics approach, which includes the determination of transcriptomic, proteomic, and metabolomic changes in treated plants. This review reports an overview of the biostimulants, taking stock on the recent molecular studies that are contributing to clarify their action mechanisms. The omics studies can provide an overall evaluation of a crop’s response, connecting the molecular changes with the physiological pathways activated and the performance with or without stress conditions. The multiple responses of plants treated with biostimulants must be correlated with the phenotype changes. In this context, it is also crucial to design an adequate experimental plan and statistical data analysis, in order to find robust correlations between biostimulant treatments and crop performance.
Journal Article
Agronomic Management for Enhancing Plant Tolerance to Abiotic Stresses: High and Low Values of Temperature, Light Intensity, and Relative Humidity
2018
Abiotic stresses have direct effects on plant growth and development. In agriculture, sub-optimal values of temperature, light intensity, and relative humidity can limit crop yield and reduce product quality. Temperature has a direct effect on whole plant metabolism, and low or high temperatures can reduce growth or induce crop damage. Solar radiation is the primary driver of crop production, but light intensity can also have negative effects, especially if concurrent with water stress and high temperature. Relative humidity also plays an important role by regulating transpiration and water balance of crops. In this review, the main effects of these abiotic stresses on crop performance are reported, and agronomic strategies used to avoid or mitigate the effects of these stresses are discussed.
Journal Article
Effect of Preharvest Abiotic Stresses on the Accumulation of Bioactive Compounds in Horticultural Produce
by
Trivellini, Alice
,
Romano, Daniela
,
Cocetta, Giacomo
in
Accumulation
,
Bioactive compounds
,
Biological activity
2019
The quality of horticultural products is the result of the interaction of different factors, including grower’s crop management ability, genotype, and environment. Sub-optimal environmental conditions during plant growth can induce abiotic stresses and reduce the crop performance with yield reduction and quality losses. However, abiotic stresses can induce several physiological, biochemical, and molecular responses in plants, aiming to cope with the stressful conditions. It is well known that these abiotic stresses are also elicitors of the biosynthesis of many metabolites in plants, including a wide range of bioactive compounds, which firstly serve as functional molecules for crop adaptation, but they have also a great interest for their beneficial effects on human health. Nowadays, the consumer is oriented to low-energy foods with low fat content, but at the same time, growing attention is paid to the presence of bioactive molecules, which are recognized as health-related compounds and concur to the nutraceutical value of plant-derived foods. In this context, fruit and vegetables play an important role as sources of bioactive ingredients in the diet. At the cultivation level, the understanding of crop responses to abiotic stresses and how they act in the biosynthesis/accumulation of these bioactive compounds is crucial. In fact, controlled abiotic stresses can be used as tools for improving the nutraceutical value of fruit and vegetables. This review focuses on the quality of vegetables and fruits as affected by preharvest abiotic stressors, with particular attention to the effect on the nutraceutical aspects.
Journal Article
Agronomic Management for Enhancing Plant Tolerance to Abiotic Stresses—Drought, Salinity, Hypoxia, and Lodging
2017
Abiotic stresses are currently responsible for significant losses in quantity and reduction in quality of global crop productions. In consequence, resilience against such stresses is one of the key aims of farmers and is attained by adopting both suitable genotypes and management practices. This latter aspect was reviewed from an agronomic point of view, taking into account stresses due to drought, water excess, salinity, and lodging. For example, drought tolerance may be enhanced by using lower plant density, anticipating the sowing or transplant as much as possible, using grafting with tolerant rootstocks, and optimizing the control of weeds. Water excess or hypoxic conditions during winter and spring can be treated with nitrate fertilizers, which increase survival rate. Salinity stress of sensitive crops may be alleviated by maintaining water content close to the field capacity by frequent and low-volume irrigation. Lodging can be prevented by installing shelterbelts against dominant winds, adopting equilibrated nitrogen fertilization, choosing a suitable plant density, and optimizing the management of pests and biotic diseases harmful to the stability and mechanic resistance of stems and roots.
Journal Article
The Contribution of Ornamental Plants to Urban Ecosystem Services
by
Romano, Daniela
,
Ferrante, Antonio
,
Francini, Alessandra
in
Air quality
,
Biodiversity
,
Carbon
2022
Urban areas can be differently anthropized; often, high-density populations lead to higher amounts of pollution. Nowadays, ornamental plants can represent important living components of urban areas, and if appropriate species are used, they can provide important ecosystem services. The relationships between green infrastructures and ecosystem services have been recognized for a long time, but the role of ornamental plant species has not been studied as much. In this frame, the different ecosystem services of ornamental plants, i.e., provisioning (e.g., food, air, and water cleaning), regulating (e.g., rain water, climate, nutrient recycling, pollination, and the formation of fertile soils), and cultural (e.g., recreation opportunities or the inspiration we draw from nature) will be critically analyzed to select the most suitable ornamental plant species able to assure the better performance. The action mechanisms will also be analyzed and discussed to individuate the best ideotypes of plant species able to better assure water purification, air quality, space for recreation, climate mitigation and adaptation, human wellbeing, and health. This information is suitable to ensure that the protection, restoration, creation, and enhancement of green infrastructure become integral parts of urban spatial planning and territorial development.
Journal Article
Response of Mediterranean Ornamental Plants to Drought Stress
by
Ferrante, Antonio
,
Romano, Daniela
,
Toscano, Stefania
in
Chlorophyll
,
chlorophyll fluorescence
,
Drought
2019
Ornamental plants use unique adaptive mechanisms to overcome the negative effects of drought stress. A large number of species grown in the Mediterranean area offer the opportunity to select some for ornamental purposes with the ability to adapt to drought conditions. The plants tolerant to drought stress show different adaptation mechanisms to overcome drought stress, including morphological, physiological, and biochemical modifications. These responses include increasing root/shoot ratio, growth reduction, leaf anatomy change, and reduction of leaf size and total leaf area to limit water loss and guarantee photosynthesis. In this review, the effect of drought stress on photosynthesis and chlorophyll a fluorescence is discussed. Recent information on the mechanisms of signal transduction and the development of drought tolerance in ornamental plants is provided. Finally, drought-induced oxidative stress is analyzed and discussed. The purpose of this review is to deepen our knowledge of how drought may modify the morphological and physiological characteristics of plants and reduce their aesthetic value—that is, the key parameter of assessment of ornamental plants.
Journal Article
Effects of Two Doses of Organic Extract-Based Biostimulant on Greenhouse Lettuce Grown Under Increasing NaCl Concentrations
by
Ferrante, Antonio
,
Bulgari, Roberta
,
Trivellini, Alice
in
Abiotic stress
,
Abscisic acid
,
biochemical analyses
2019
The enhancement of plant tolerance toward abiotic stresses is increasingly being supported by the application of biostimulants. Salinity represents a serious problem in the Mediterranean region. To verify the effects deriving from the application of biostimulants, trials on Romaine lettuce plants under salt exposure were performed, in greenhouse. Plants were subjected to three NaCl solutions with 0.8, 1.3, and 1.8 dS/m of electrical conductivity. The volume of the solution was 200 mL/plant and delivered every 3 days. Biostimulant treatments started after crop establishment and were: control (water) and two doses (0.1 or 0.2 mL/plant) of the commercial biostimulant Retrosal
(Valagro S.p.A), containing calcium, zinc, and specific active ingredients. Four Retrosal
treatments were applied, every 7 days, directly to the substrate. Non-destructive analyses were conducted to assess the effects on leaf photosynthetic efficiency. At harvest, plants fresh weight (FW) and dry weight were determined, as well as the concentration of chlorophylls, carotenoids, total sugars, nitrate, proline, and abscisic acid (ABA). The biostimulant tested increased significantly the FW of lettuce (+65% in the highest dose) compared to controls. Results indicate that treatments positively affected the chlorophyll content measured
(+45% in the highest dose) and that a general positive effect was observable on net photosynthesis rate. Retrosal
seems to improve the gas exchanges under our experimental conditions. The total sugars levels were not affected by treatments. Biostimulant allowed maintaining nitrate concentration similar to the untreated and unstressed controls. The increasing levels of water salinity caused a raise in proline concentration in control plants (+85%); biostimulant treatments at 0.2 mL/plant dose kept lower the proline levels. All plants treated with the biostimulant showed lower value of ABA (-34%) compared to controls. Results revealed that Retrosal
is able to stimulate plant growth independently from the salinity exposure. However, treated plants reached faster the commercial maturity stage. The fresh biomass of control at the end of experiment, after 30 days, ranged from 15 to 42 g/head, while in biostimulant treated plants ranged from 45 to 94 g/head. The product applied at maximum dose seems to be the most effective in our experimental conditions.
Journal Article
The Role of Blue and Red Light in the Orchestration of Secondary Metabolites, Nutrient Transport and Plant Quality
by
Trivellini, Alice
,
Romano, Daniela
,
Ferrante, Antonio
in
Analysis
,
Carbohydrates
,
carbon dioxide fixation
2023
Light is a fundamental environmental parameter for plant growth and development because it provides an energy source for carbon fixation during photosynthesis and regulates many other physiological processes through its signaling. In indoor horticultural cultivation systems, sole-source light-emitting diodes (LEDs) have shown great potential for optimizing growth and producing high-quality products. Light is also a regulator of flowering, acting on phytochromes and inducing or inhibiting photoperiodic plants. Plants respond to light quality through several light receptors that can absorb light at different wavelengths. This review summarizes recent progress in our understanding of the role of blue and red light in the modulation of important plant quality traits, nutrient absorption and assimilation, as well as secondary metabolites, and includes the dynamic signaling networks that are orchestrated by blue and red wavelengths with a focus on transcriptional and metabolic reprogramming, plant productivity, and the nutritional quality of products. Moreover, it highlights future lines of research that should increase our knowledge to develop tailored light recipes to shape the plant characteristics and the nutritional and nutraceutical value of horticultural products.
Journal Article
Quality Evaluation of Indoor-Grown Microgreens Cultivated on Three Different Substrates
2021
The microgreens are innovative products in the horticultural sector. They are appreciated by consumers thanks to their novelty and health-related benefits, having a high antioxidant concentration. This produce can be adopted for indoor production using hydroponic systems. The aim of the present work was to investigate the influence of three growing media (vermiculite, coconut fiber, and jute fabric) on yield and quality parameters of two basil varieties (Green basil—Ocimum basilicum L., Red basil—Ocimum basilicum var. Purpurecsens) and rocket (Eruca sativa Mill.) as microgreens. Microgreens were grown in floating, in a Micro Experimental Growing (MEG®) system equipped with LED lamps, with modulation of both energy and spectra of the light supplied to plants. Results showed high yield, comprised from 2 to 3 kg m−2. Nutritional quality varied among species and higher antioxidant compounds were found in red basil on vermiculite and jute. Coconut fiber allowed the differentiation of crop performance in terms of sucrose and above all nitrate. In particular, our results point out that the choice of the substrate significantly affected the yield, the dry matter percentage and the nitrate concentration of microgreens, while the other qualitative parameters were most influenced by the species.
Journal Article