Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
32
result(s) for
"Ferreira, Diana L. Santos"
Sort by:
Association of pre-pregnancy body mass index with offspring metabolic profile: Analyses of 3 European prospective birth cohorts
by
Ala-Korpela, Mika
,
Kangas, Antti J.
,
Jarvelin, Marjo-Riitta
in
Adipose tissue
,
Adolescent
,
Adult
2017
A high proportion of women start pregnancy overweight or obese. According to the developmental overnutrition hypothesis, this could lead offspring to have metabolic disruption throughout their lives and thus perpetuate the obesity epidemic across generations. Concerns about this hypothesis are influencing antenatal care. However, it is unknown whether maternal pregnancy adiposity is associated with long-term risk of adverse metabolic profiles in offspring, and if so, whether this association is causal, via intrauterine mechanisms, or explained by shared familial (genetic, lifestyle, socioeconomic) characteristics. We aimed to determine if associations between maternal body mass index (BMI) and offspring systemic cardio-metabolic profile are causal, via intrauterine mechanisms, or due to shared familial factors.
We used 1- and 2-stage individual participant data (IPD) meta-analysis, and a negative-control (paternal BMI) to examine the association between maternal pre-pregnancy BMI and offspring serum metabolome from 3 European birth cohorts (offspring age at blood collection: 16, 17, and 31 years). Circulating metabolic traits were quantified by high-throughput nuclear magnetic resonance metabolomics. Results from 1-stage IPD meta-analysis (N = 5327 to 5377 mother-father-offspring trios) showed that increasing maternal and paternal BMI was associated with an adverse cardio-metabolic profile in offspring. We observed strong positive associations with very-low-density lipoprotein (VLDL)-lipoproteins, VLDL-cholesterol (C), VLDL-triglycerides, VLDL-diameter, branched/aromatic amino acids, glycoprotein acetyls, and triglycerides, and strong negative associations with high-density lipoprotein (HDL), HDL-diameter, HDL-C, HDL2-C, and HDL3-C (all P < 0.003). Slightly stronger magnitudes of associations were present for maternal compared with paternal BMI across these associations; however, there was no strong statistical evidence for heterogeneity between them (all bootstrap P > 0.003, equivalent to P > 0.05 after accounting for multiple testing). Results were similar in each individual cohort, and in the 2-stage analysis. Offspring BMI showed similar patterns of cross-sectional association with metabolic profile as for parental pre-pregnancy BMI associations but with greater magnitudes. Adjustment of parental BMI-offspring metabolic traits associations for offspring BMI suggested the parental associations were largely due to the association of parental BMI with offspring BMI. Limitations of this study are that inferences cannot be drawn about the role of circulating maternal fetal fuels (i.e., glucose, lipids, fatty acids, and amino acids) on later offspring metabolic profile. In addition, BMI may not reflect potential effects of maternal pregnancy fat distribution.
Our findings suggest that maternal BMI-offspring metabolome associations are likely to be largely due to shared genetic or familial lifestyle confounding rather than to intrauterine mechanisms.
Journal Article
The effect of a lifestyle intervention in obese pregnant women on gestational metabolic profiles: findings from the UK Pregnancies Better Eating and Activity Trial (UPBEAT) randomised controlled trial
2019
Background
Pregnancy is associated with widespread change in metabolism, which may be more marked in obese women. Whether lifestyle interventions in obese pregnant women improve pregnancy metabolic profiles remains unknown. Our objectives were to determine the magnitude of change in metabolic measures during obese pregnancy, to indirectly compare these to similar profiles in a general pregnant population, and to determine the impact of a lifestyle intervention on change in metabolic measures in obese pregnant women.
Methods
Data from a randomised controlled trial of 1158 obese (BMI ≥ 30 kg/m
2
) pregnant women recruited from six UK inner-city obstetric departments were used. Women were randomised to either the UPBEAT intervention, a tailored complex lifestyle intervention focused on improving diet and physical activity, or standard antenatal care (control group). UPBEAT has been shown to improve diet and physical activity during pregnancy and up to 6-months postnatally in obese women and to reduce offspring adiposity at 6-months; it did not affect risk of gestational diabetes (the primary outcome). Change in the concentrations of 158 metabolic measures (129 lipids, 9 glycerides and phospholipids, and 20 low-molecular weight metabolites), quantified three times during pregnancy, were compared using multilevel models. The role of chance was assessed with a false discovery rate of 5% adjusted
p
values.
Results
All very low-density lipoprotein (VLDL) particles increased by 1.5–3 standard deviation units (SD) whereas intermediate density lipoprotein and specific (large, medium and small) LDL particles increased by 1–2 SD, between 16 and 36 weeks’ gestation. Triglycerides increased by 2–3 SD, with more modest changes in other metabolites. Indirect comparisons suggest that the magnitudes of change across pregnancy in these obese women were 2- to 3-fold larger than in unselected women (
n
= 4260 in cross-sectional and 583 in longitudinal analyses) from an independent, previously published, study. The intervention reduced the rate of increase in extremely large, very large, large and medium VLDL particles, particularly those containing triglycerides.
Conclusion
There are marked changes in lipids and lipoproteins and more modest changes in other metabolites across pregnancy in obese women, with some evidence that this is more marked than in unselected pregnant women. The UPBEAT lifestyle intervention may contribute to a healthier metabolic profile in obese pregnant women, but our results require replication.
Trial Registration
UPBEAT was registered with Current Controlled Trials,
ISRCTN89971375
, on July 23, 2008 (prior to recruitment).
Journal Article
Childhood overeating is associated with adverse cardiometabolic and inflammatory profiles in adolescence
2021
Childhood eating behaviour contributes to the rise of obesity and related noncommunicable disease worldwide. However, we lack a deep understanding of biochemical alterations that can arise from aberrant eating behaviour. In this study, we prospectively associate longitudinal trajectories of childhood overeating, undereating, and fussy eating with metabolic markers at age 16 years to explore adolescent metabolic alterations related to specific eating patterns in the first 10 years of life. Data are from the Avon Longitudinal Study of Parents and Children (
n
= 3104). We measure 158 metabolic markers with a high-throughput (
1
H) NMR metabolomics platform. Increasing childhood overeating is prospectively associated with an adverse cardiometabolic profile (i.e., hyperlipidemia, hypercholesterolemia, hyperlipoproteinemia) in adolescence; whereas undereating and fussy eating are associated with lower concentrations of the amino acids glutamine and valine, suggesting a potential lack of micronutrients. Here, we show associations between early behavioural indicators of eating and metabolic markers.
Journal Article
Differences in Pregnancy Metabolic Profiles and Their Determinants between White European and South Asian Women: Findings from the Born in Bradford Cohort
by
West, Jane
,
A. Lawlor, Deborah
,
L. Santos Ferreira, Diana
in
Amino acids
,
Apolipoproteins
,
birth cohort
2019
There is widespread metabolic disruption in women upon becoming pregnant. South Asians (SA) compared to White Europeans (WE) have more fat mass and are more insulin-resistant at a given body mass index (BMI). Whether these are reflected in other gestational metabolomic differences is unclear. Our aim was to compare gestational metabolic profiles and their determinants between WE and SA women. We used data from a United Kingdom (UK) cohort to compare metabolic profiles and associations of maternal age, education, parity, height, BMI, tricep skinfold thickness, gestational diabetes (GD), pre-eclampsia, and gestational hypertension with 156 metabolic measurements in WE (n = 4072) and SA (n = 4702) women. Metabolic profiles, measured in fasting serum taken between 26–28 weeks gestation, were quantified by nuclear magnetic resonance. Distributions of most metabolic measures differed by ethnicity. WE women had higher levels of most lipoprotein subclasses, cholesterol, glycerides and phospholipids, monosaturated fatty acids, and creatinine but lower levels of glucose, linoleic acid, omega-6 and polyunsaturated fatty acids, and most amino acids. Higher BMI and having GD were associated with higher levels of several lipoprotein subclasses, triglycerides, and other metabolites, mostly with stronger associations in WEs. We have shown differences in gestational metabolic profiles between WE and SA women and demonstrated that associations of exposures with these metabolites differ by ethnicity.
Journal Article
Metabolic characterization of menopause: cross-sectional and longitudinal evidence
2018
Background
Women who experience menopause are at higher cardiometabolic risk and often display adverse changes in metabolic biomarkers compared with pre-menopausal women. It remains elusive whether the changes in cardiometabolic biomarkers during the menopausal transition are due to ovarian aging or chronological aging. Well-conducted longitudinal studies are required to determine this. The aim of this study was to explore the cross-sectional and longitudinal associations of reproductive status, defined according to the 2012 Stages of Reproductive Aging Workshop criteria, with 74 metabolic biomarkers, and establish whether any associations are independent of age-related changes.
Methods
We determined cross-sectional associations of reproductive status with metabolic profiling in 3,312 UK midlife women. In a subgroup of 1,492 women who had repeat assessments after 2.5 years, we assessed how the change in reproductive status was associated with the changes in metabolic biomarkers. Metabolic profiles were measured by high-throughput quantitative nuclear magnetic resonance metabolomics. In longitudinal analyses, we compared the change in metabolic biomarkers for each reproductive-status category change to that of the reference of being pre-menopausal at both time points. As all women aged by a similar amount during follow-up, these analyses contribute to distinguishing age-related changes from those related to change in reproductive status.
Results
Consistent cross-sectional and longitudinal associations of menopause with a wide range of metabolic biomarkers were observed, suggesting the transition to menopause induces multiple metabolic changes independent of chronological aging. The metabolic changes included increased concentrations of very small very low-density lipoproteins, intermediate-density lipoproteins, low-density lipoproteins (LDLs), remnant, and LDL cholesterol, and reduced LDL particle size, all toward an atherogenic lipoprotein profile. Increased inflammation was suggested via an inflammatory biomarker, glycoprotein acetyls, but not via C-reactive protein. Also, levels of glutamine and albumin increased during the transition. Most of these metabolic changes seen at the time of becoming post-menopausal remained or became slightly stronger during the post-menopausal years.
Conclusions
The transition to post-menopause has effects on multiple circulating metabolic biomarkers, over and above the underlying age trajectory. The adverse changes in multiple apolipoprotein-B-containing lipoprotein subclasses and increased inflammation may underlie women’s increased cardiometabolic risk in their post-menopausal years.
Journal Article
Eating behavior trajectories in the first 10 years of life and their relationship with BMI
2020
BackgroundChild eating behaviors are highly heterogeneous and their longitudinal impact on childhood weight is unclear. The objective of this study was to characterize eating behaviors during the first 10 years of life and evaluate associations with BMI at age 11 years.MethodData were parental reports of eating behaviors from 15 months to age 10 years (n = 12,048) and standardized body mass index (zBMI) at age 11 years (n = 4884) from the Avon Longitudinal Study of Parents and Children. Latent class growth analysis was used to derive latent classes of over-, under-, and fussy-eating. Linear regression models for zBMI at 11 years on each set of classes were fitted to assess associations with eating behavior trajectories.ResultsWe identified four classes of overeating; “low stable” (70%), “low transient” (15%), “late increasing” (11%), and “early increasing” (6%). The “early increasing” class was associated with higher zBMI (boys: β = 0.83, 95% CI: 0.65, 1.02; girls: β = 1.1; 0.92, 1.28) compared with “low stable.” Six classes were found for undereating; “low stable” (25%), “low transient” (37%), “low decreasing” (21%), “high transient” (11%), “high decreasing” (4%), and “high stable” (2%). The latter was associated with lower zBMI (boys: β = −0.79; −1.15, −0.42; girls: β = −0.76; −1.06, −0.45). Six classes were found for fussy eating; “low stable” (23%), “low transient” (15%), “low increasing” (28%), “high decreasing” (14%), “low increasing” (13%), and “high stable” (8%). The “high stable” class was associated with lower zBMI (boys: β = −0.49; −0.68–0.30; girls: β = −0.35; −0.52, −0.18).ConclusionsEarly increasing overeating during childhood is associated with higher zBMI at age 11. High persistent levels of undereating and fussy eating are associated with lower zBMI. Longitudinal trajectories of eating behaviors may help identify children potentially at risk of adverse weight outcomes.
Journal Article
Sex differences in systemic metabolites at four life stages: cohort study with repeated metabolomics
2021
Background
Males experience higher rates of coronary heart disease (CHD) than females, but the circulating traits underpinning this difference are poorly understood. We examined sex differences in systemic metabolites measured at four life stages, spanning childhood to middle adulthood.
Methods
Data were from the Avon Longitudinal Study of Parents and Children (7727 offspring, 49% male; and 6500 parents, 29% male). Proton nuclear magnetic resonance (
1
H-NMR) spectroscopy from a targeted metabolomics platform was performed on EDTA-plasma or serum samples to quantify 229 systemic metabolites (including lipoprotein-subclass-specific lipids, pre-glycaemic factors, and inflammatory glycoprotein acetyls). Metabolites were measured in the same offspring once in childhood (mean age 8 years), twice in adolescence (16 years and 18 years) and once in early adulthood (25 years), and in their parents once in middle adulthood (50 years). Linear regression models estimated differences in metabolites for males versus females on each occasion (serial cross-sectional associations).
Results
At 8 years, total lipids in very-low-density lipoproteins (VLDL) were lower in males; levels were higher in males at 16 years and higher still by 18 years and 50 years (among parents) for medium-or-larger subclasses. Larger sex differences at older ages were most pronounced for VLDL triglycerides—males had 0.19 standard deviations (SD) (95% CI = 0.12, 0.26) higher at 18 years, 0.50 SD (95% CI = 0.42, 0.57) higher at 25 years, and 0.62 SD (95% CI = 0.55, 0.68) higher at 50 years. Low-density lipoprotein (LDL) cholesterol, apolipoprotein-B, and glycoprotein acetyls were generally lower in males across ages. The direction and magnitude of effects were largely unchanged when adjusting for body mass index measured at the time of metabolite assessment on each occasion.
Conclusions
Our results suggest that males begin to have higher VLDL triglyceride levels in adolescence, with larger sex differences at older ages. Sex differences in other CHD-relevant metabolites, including LDL cholesterol, show the opposite pattern with age, with higher levels among females. Such life course trends may inform causal analyses with clinical endpoints in specifying traits which underpin higher age-adjusted CHD rates commonly seen among males.
Journal Article
The Effect of Pre-Analytical Conditions on Blood Metabolomics in Epidemiological Studies
2019
Serum and plasma are commonly used in metabolomic-epidemiology studies. Their metabolome is susceptible to differences in pre-analytical conditions and the impact of this is unclear. Participant-matched EDTA-plasma and serum samples were collected from 37 non-fasting volunteers and profiled using a targeted nuclear magnetic resonance (NMR) metabolomics platform (n = 151 traits). Correlations and differences in mean of metabolite concentrations were compared between reference (pre-storage: 4 °C, 1.5 h; post-storage: no buffer addition delay or NMR analysis delay) and four pre-storage blood processing conditions, where samples were incubated at (i) 4 °C, 24 h; (ii) 4 °C, 48 h; (iii) 21 °C, 24 h; and (iv) 21 °C, 48 h, before centrifugation; and two post-storage sample processing conditions in which samples thawed overnight (i) then left for 24 h before addition of sodium buffer followed by immediate NMR analysis; and (ii) addition of sodium buffer, then left for 24 h before NMR profiling. We used multilevel linear regression models and Spearman’s rank correlation coefficients to analyse the data. Most metabolic traits had high rank correlation and minimal differences in mean concentrations between samples subjected to reference and the different conditions tested, that may commonly occur in studies. However, glycolysis metabolites, histidine, acetate and diacylglycerol concentrations may be compromised and this could bias results in association/causal analyses.
Journal Article
Associations between Blood Metabolic Profile at 7 Years Old and Eating Disorders in Adolescence: Findings from the Avon Longitudinal Study of Parents and Children
2019
Eating disorders are severe illnesses characterized by both psychiatric and metabolic factors. We explored the prospective role of metabolic risk in eating disorders in a UK cohort (n = 2929 participants), measuring 158 metabolic traits in non-fasting EDTA-plasma by nuclear magnetic resonance. We associated metabolic markers at 7 years (exposure) with risk for anorexia nervosa and binge-eating disorder (outcomes) at 14, 16, and 18 years using logistic regression adjusted for maternal education, child’s sex, age, body mass index, and calorie intake at 7 years. Elevated very low-density lipoproteins, triglycerides, apolipoprotein-B/A, and monounsaturated fatty acids ratio were associated with lower odds of anorexia nervosa at age 18, while elevated high-density lipoproteins, docosahexaenoic acid and polyunsaturated fatty acids ratio, and fatty acid unsaturation were associated with higher risk for anorexia nervosa at 18 years. Elevated linoleic acid and n-6 fatty acid ratios were associated with lower odds of binge-eating disorder at 16 years, while elevated saturated fatty acid ratio was associated with higher odds of binge-eating disorder. Most associations had large confidence intervals and showed, for anorexia nervosa, different directions across time points. Overall, our results show some evidence for a role of metabolic factors in eating disorders development in adolescence.
Journal Article
Polygenic Score for Body Mass Index Is Associated with Disordered Eating in a General Population Cohort
by
Loos, Ruth J. F.
,
Herle, Moritz
,
Micali, Nadia
in
Behavior
,
Body mass index
,
Child development
2020
Background: Disordered eating (DE) is common and is associated with body mass index (BMI). We investigated whether genetic variants for BMI were associated with DE. Methods: BMI polygenic scores (PGS) were calculated for participants of the Avon Longitudinal Study of Parents and Children (ALSPAC; N = 8654) and their association with DE tested. Data on DE behaviors (e.g., binge eating and compensatory behaviors) were collected at ages 14, 16, 18 years, and DE cognitions (e.g., body dissatisfaction) at 14 years. Mediation analyses determined whether BMI mediated the association between the BMI-PGS and DE. Results: The BMI-PGS was positively associated with fasting (OR = 1.42, 95% CI = 1.25, 1.61), binge eating (OR = 1.28, 95% CI = 1.12, 1.46), purging (OR = 1.20, 95% CI = 1.02, 1.42), body dissatisfaction (Beta = 0.99, 95% CI = 0.77, 1.22), restrained eating (Beta = 0.14, 95% CI = 0.10, 1.17), emotional eating (Beta = 0.21, 95% CI = 0.052, 0.38), and negatively associated with thin ideal internalization (Beta = −0.15, 95% CI = −0.23, −0.07) and external eating (Beta = −0.19, 95% CI = −0.30, −0.09). These associations were mainly mediated by BMI. Conclusions: Genetic variants associated with BMI are also associated with DE. This association was mediated through BMI suggesting that weight potentially sits on the pathway from genetic liability to DE.
Journal Article