Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
67
result(s) for
"Fieguth, Paul"
Sort by:
Deep Learning for Generic Object Detection: A Survey
2020
Object detection, one of the most fundamental and challenging problems in computer vision, seeks to locate object instances from a large number of predefined categories in natural images. Deep learning techniques have emerged as a powerful strategy for learning feature representations directly from data and have led to remarkable breakthroughs in the field of generic object detection. Given this period of rapid evolution, the goal of this paper is to provide a comprehensive survey of the recent achievements in this field brought about by deep learning techniques. More than 300 research contributions are included in this survey, covering many aspects of generic object detection: detection frameworks, object feature representation, object proposal generation, context modeling, training strategies, and evaluation metrics. We finish the survey by identifying promising directions for future research.
Journal Article
A new concordant partial AUC and partial c statistic for imbalanced data in the evaluation of machine learning algorithms
by
Holzinger, Andreas
,
Carrington, André M.
,
Fieguth, Paul W.
in
Algorithms
,
Area Under Curve
,
Area under the ROC curve
2020
Background
In classification and diagnostic testing, the receiver-operator characteristic (ROC) plot and the area under the ROC curve (AUC) describe how an adjustable threshold causes changes in two types of error: false positives and false negatives. Only part of the ROC curve and AUC are informative however when they are used with imbalanced data. Hence, alternatives to the AUC have been proposed, such as the partial AUC and the area under the precision-recall curve. However, these alternatives cannot be as fully interpreted as the AUC, in part because they ignore some information about actual negatives.
Methods
We derive and propose a new concordant partial AUC and a new partial
c
statistic for ROC data—as foundational measures and methods to help understand and explain parts of the ROC plot and AUC. Our partial measures are continuous and discrete versions of the same measure, are derived from the AUC and c statistic respectively, are validated as equal to each other, and validated as equal in summation to whole measures where expected. Our partial measures are tested for validity on a classic ROC example from Fawcett, a variation thereof, and two real-life benchmark data sets in breast cancer: the Wisconsin and Ljubljana data sets. Interpretation of an example is then provided.
Results
Results show the expected equalities between our new partial measures and the existing whole measures. The example interpretation illustrates the need for our newly derived partial measures.
Conclusions
The concordant partial area under the ROC curve was proposed and unlike previous partial measure alternatives, it maintains the characteristics of the AUC. The first partial c statistic for ROC plots was also proposed as an unbiased interpretation for part of an ROC curve. The expected equalities among and between our newly derived partial measures and their existing full measure counterparts are confirmed. These measures may be used with any data set but this paper focuses on imbalanced data with low prevalence.
Future work
Future work with our proposed measures may: demonstrate their value for imbalanced data with high prevalence, compare them to other measures not based on areas; and combine them with other ROC measures and techniques.
Journal Article
Virtual histological staining of label-free total absorption photoacoustic remote sensing (TA-PARS)
by
Pekar, Vlad
,
Dinakaran, Deepak
,
Haji Reza, Parsin
in
639/166/985
,
639/624/1107/328
,
Absorption
2022
Histopathological visualizations are a pillar of modern medicine and biological research. Surgical oncology relies exclusively on post-operative histology to determine definitive surgical success and guide adjuvant treatments. The current histology workflow is based on bright-field microscopic assessment of histochemical stained tissues and has some major limitations. For example, the preparation of stained specimens for brightfield assessment requires lengthy sample processing, delaying interventions for days or even weeks. Therefore, there is a pressing need for improved histopathology methods. In this paper, we present a deep-learning-based approach for virtual label-free histochemical staining of total-absorption photoacoustic remote sensing (TA-PARS) images of unstained tissue. TA-PARS provides an array of directly measured label-free contrasts such as scattering and total absorption (radiative and non-radiative), ideal for developing H&E colorizations without the need to infer arbitrary tissue structures. We use a Pix2Pix generative adversarial network to develop visualizations analogous to H&E staining from label-free TA-PARS images. Thin sections of human skin tissue were first virtually stained with the TA-PARS, then were chemically stained with H&E producing a one-to-one comparison between the virtual and chemical staining. The one-to-one matched virtually- and chemically- stained images exhibit high concordance validating the digital colorization of the TA-PARS images against the gold standard H&E. TA-PARS images were reviewed by four dermatologic pathologists who confirmed they are of diagnostic quality, and that resolution, contrast, and color permitted interpretation as if they were H&E. The presented approach paves the way for the development of TA-PARS slide-free histological imaging, which promises to dramatically reduce the time from specimen resection to histological imaging.
Journal Article
Deep learning methods for inverse problems
by
Azimifar, Zohreh
,
Sabzi, Rasool
,
Kamyab, Shima
in
3D reconstruction as inverse problem
,
Artificial Intelligence
,
Categories
2022
In this paper we investigate a variety of deep learning strategies for solving inverse problems. We classify existing deep learning solutions for inverse problems into three categories of Direct Mapping, Data Consistency Optimizer, and Deep Regularizer. We choose a sample of each inverse problem type, so as to compare the robustness of the three categories, and report a statistical analysis of their differences. We perform extensive experiments on the classic problem of linear regression and three well-known inverse problems in computer vision, namely image denoising, 3D human face inverse rendering, and object tracking, in presence of noise and outliers, are selected as representative prototypes for each class of inverse problems. The overall results and the statistical analyses show that the solution categories have a robustness behaviour dependent on the type of inverse problem domain, and specifically dependent on whether or not the problem includes measurement outliers. Based on our experimental results, we conclude by proposing the most robust solution category for each inverse problem class.
Journal Article
Multi-channel feature extraction for virtual histological staining of photon absorption remote sensing images
by
Boktor, Marian
,
Ecclestone, Benjamin R.
,
Ye, Jennifer Ai
in
639/166/985
,
639/624/1107/328
,
Absorption
2024
Accurate and fast histological staining is crucial in histopathology, impacting diagnostic precision and reliability. Traditional staining methods are time-consuming and subjective, causing delays in diagnosis. Digital pathology plays a vital role in advancing and optimizing histology processes to improve efficiency and reduce turnaround times. This study introduces a novel deep learning-based framework for virtual histological staining using photon absorption remote sensing (PARS) images. By extracting features from PARS time-resolved signals using a variant of the K-means method, valuable multi-modal information is captured. The proposed multi-channel cycleGAN model expands on the traditional cycleGAN framework, allowing the inclusion of additional features. Experimental results reveal that specific combinations of features outperform the conventional channels by improving the labeling of tissue structures prior to model training. Applied to human skin and mouse brain tissue, the results underscore the significance of choosing the optimal combination of features, as it reveals a substantial visual and quantitative concurrence between the virtually stained and the gold standard chemically stained hematoxylin and eosin images, surpassing the performance of other feature combinations. Accurate virtual staining is valuable for reliable diagnostic information, aiding pathologists in disease classification, grading, and treatment planning. This study aims to advance label-free histological imaging and opens doors for intraoperative microscopy applications.
Journal Article
In-vivo functional and structural retinal imaging using multiwavelength photoacoustic remote sensing microscopy
2022
Many important eye diseases as well as systemic disorders manifest themselves in the retina. Retinal imaging technologies are rapidly growing and can provide ever-increasing amounts of information about the structure, function, and molecular composition of retinal tissue in-vivo. Photoacoustic remote sensing (PARS) is a novel imaging modality based on all-optical detection of photoacoustic signals, which makes it suitable for a wide range of medical applications. In this study, PARS is applied for in-vivo imaging of the retina and estimating oxygen saturation in the retinal vasculature. To our knowledge, this is the first time that a non-contact photoacoustic imaging technique is applied for in-vivo imaging of the retina. Here, optical coherence tomography is also used as a well-established retinal imaging technique to navigate the PARS imaging beams and demonstrate the capabilities of the optical imaging setup. The system is applied for in-vivo imaging of both microanatomy and the microvasculature of the retina
.
The developed system has the potential to advance the understanding of the ocular environment and to help in monitoring of ophthalmic diseases.
Journal Article
Uncertainty-Aware δ-GLMB Filtering for Multi-Target Tracking
2025
The δ-GLMB filter is an analytic solution to the multi-target Bayes recursion used in multi-target tracking. It extends the Generalised Labelled Multi-Bernoulli (GLMB) framework by providing an efficient and scalable implementation while preserving track identities, making it a widely used approach in the field. Theoretically, the δ-GLMB filter handles uncertainties in measurements in its filtering procedure. However, in practice, degeneration of the measurement quality affects the performance of this filter. In this paper, we discuss the effects of increasing measurement uncertainty on the δ-GLMB filter and also propose two heuristic methods to improve the performance of the filter in such conditions. The base idea of the proposed methods is to utilise the information stored in the history of the filtering procedure, which can be used to decrease the measurement uncertainty effects on the filter. Since GLMB filters have shown good results in the field of multi-target tracking, an uncertainty-immune δ-GLMB can serve as a strong tool in this area. In this study, the results indicate that the proposed heuristic ideas can improve the performance of filtering in the presence of uncertain observations. Experimental evaluations demonstrate that the proposed methods enhance track continuity and robustness, particularly in scenarios with low detection rates and high clutter, while maintaining computational feasibility.
Journal Article
From Single Shot to Structure: End-to-End Network-Based Deflectometry for Specular Free-Form Surface Reconstruction
2024
Deflectometry is a key component in the precise measurement of specular (mirrored) surfaces; however, traditional methods often lack an end-to-end approach that performs 3D reconstruction in a single shot with high accuracy and generalizes across different free-form surfaces. This paper introduces a novel deep neural network (DNN)-based approach for end-to-end 3D reconstruction of free-form specular surfaces using single-shot deflectometry. Our proposed network, VUDNet, innovatively combines discriminative and generative components to accurately interpret orthogonal fringe patterns and generate high-fidelity 3D surface reconstructions. By leveraging a hybrid architecture integrating a Variational Autoencoder (VAE) and a modified U-Net, VUDNet excels in both depth estimation and detail refinement, achieving superior performance in challenging environments. Extensive data simulation using Blender leading to a dataset which we will make available, ensures robust training and enables the network to generalize across diverse scenarios. Experimental results demonstrate the strong performance of VUDNet, setting a new standard for 3D surface reconstruction.
Journal Article
Automatic Detection of the Ice Edge in SAR Imagery Using Curvelet Transform and Active Contour
2016
A novel method based on the curvelet transform and active contour method to automatically detect the ice edge in Synthetic Aperture Radar (SAR) imagery is proposed. The method utilizes the location of high curvelet coefficients to determine regions in the image likely to contain the ice edge. Using an ice edge from passive microwave sea ice concentration for initialization, these regions are then joined using the active contour method to obtain the final ice edge. The method is evaluated on four dual polarization SAR scenes of the Labrador sea. Through comparison of the ice edge with that from image analysis charts, it is demonstrated that the proposed method can detect the ice edge effectively in SAR images. This is particularly relevant when the marginal ice zone is diffuse or the ice is thin, and using the definition of ice edge from the passive microwave ice concentration would underestimate the ice edge location. It is expected that the method may be useful for operations in marginal ice zones, such as offshore drilling, where a high resolution estimate of the ice edge location is required. It could also be useful as a first guess for an ice analyst, or for the assimilation of SAR data.
Journal Article