Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
10
result(s) for
"Fierli, David"
Sort by:
Influence of exogenous phytohormone supplementation on the pigment and fatty acid content of three marine diatoms
2022
Diatoms are ubiquitous photosynthetic microorganisms with great potential for biotechnological applications. However, their commercialisation is hampered by production costs, requiring hence optimisation of cultivation methods. Phytohormones are plant growth regulators which may be used to influence physiological processes in microalgae, including diatoms. In this study, the model species
Phaeodactylum tricornutum
(
Phaeodactylaceae
) and two Irish isolates of
Stauroneis
sp. (
Stauroneidaceae
) and
Nitzschia
sp. (
Bacillariaceae
) were grown with varying amounts of the phytohormones indoleacetic acid (IAA), gibberellic acid (GA3), methyl jasmonate (MJ), abscisic acid (ABA) or salicylic acid (SA), and their influence on pigment and fatty acid profiles was monitored. The application of GA3 (200 mg/l) stimulated the growth
of P. tricornutum
which accumulated 52% more dry biomass compared to the control and concomitantly returned the highest eicosapentaenoic acid (EPA) yield (0.6 mg/l). The highest fucoxanthin yield (0.18 mg/l) was obtained for
P. tricornutum
cultivated with GA3 (2 mg/l) supplementation. In
Stauroneis
sp., SA (1 mg/l) had the most positive effect on EPA, the content of which was enhanced up to 45.7 μg/mg (4.6% of total dry weight). The SA (1 mg/l) treatment also boosted carotenogenesis in
Nitzschia
sp., leading to 1.7- and 14-fold increases in fucoxanthin and β-carotene compared to the control, respectively. Of note, MJ (0.5 mg/l) increased the EPA content of all diatom species compared to their controls. These results indicate that phytohormone-based treatments can be used to alter the pigment and lipid content of microalgae, which tend to respond in dose- and species-specific manners to individual compounds.
Key points
•
Response to phytohormones was investigated in diatoms from distinct families
.
•
MJ (0.5 mg/l) caused an increase in EPA cellular content in all three diatoms
.
•
Phytohormones mostly caused dose-dependent and species-specific responses
.
Journal Article
Cold stress combined with salt or abscisic acid supplementation enhances lipogenesis and carotenogenesis in Phaeodactylum tricornutum (Bacillariophyceae)
2022
Compounds from microalgae such as ω3-fatty acids or carotenoid are commercially exploited within the pharmacology, nutraceutical, or cosmetic sectors. The co-stimulation of several compounds of interest may improve the cost-effectiveness of microalgal biorefinery pipelines. This study focussed on Phaeodactylum tricornutum to investigate the effects on lipogenesis and carotenogenesis of combined stressors, here cold temperature and addition of NaCl salt or the phytohormone abscisic acid, using a two-stage cultivation strategy. Cold stress with NaCl or phytohormone addition increased the neutral lipid content of the biomass (20 to 35%). These treatments also enhanced the proportions of EPA (22% greater than control) in the fatty acid profile. Also, these treatments had a stimulatory effect on carotenogenesis, especially the combination of cold stress with NaCl addition, which returned the highest production of fucoxanthin (33% increase). The gene expression of diacylglycerol acyltransferase (DGAT) and the ω-3 desaturase precursor (PTD15) were enhanced 4- and 16-fold relative to the control, respectively. In addition, zeaxanthin epoxidase 3 (ZEP3), was downregulated at low temperature when combined with abscisic acid. These results highlight the benefits of applying a combination of low temperature and salinity stress, to simultaneously enhance the yields of the valuable metabolites EPA and fucoxanthin in Phaeodactylum tricornutum.
Journal Article
Influence of exogenous phytohormone supplementation on the pigment and fatty acid content of three marine diatoms
2022
Diatoms are ubiquitous photosynthetic microorganisms with great potential for biotechnological applications. However, their commercialisation is hampered by production costs, requiring hence optimisation of cultivation methods. Phytohormones are plant growth regulators which may be used to influence physiological processes in microalgae, including diatoms. In this study, the model species Phaeodactylum tricornutum (Phaeodactylaceae) and two Irish isolates of Stauroneis sp. (Stauroneidaceae) and Nitzschia sp. (Bacillariaceae) were grown with varying amounts of the phytohormones indoleacetic acid (IAA), gibberellic acid (GA3), methyl jasmonate (MJ), abscisic acid (ABA) or salicylic acid (SA), and their influence on pigment and fatty acid profiles was monitored. The application of GA3 (200 mg/l) stimulated the growth of P. tricornutum which accumulated 52% more dry biomass compared to the control and concomitantly returned the highest eicosapentaenoic acid (EPA) yield (0.6 mg/l). The highest fucoxanthin yield (0.18 mg/l) was obtained for P. tricornutum cultivated with GA3 (2 mg/l) supplementation. In Stauroneis sp., SA (1 mg/l) had the most positive effect on EPA, the content of which was enhanced up to 45.7 [mu]g/mg (4.6% of total dry weight). The SA (1 mg/l) treatment also boosted carotenogenesis in Nitzschia sp., leading to 1.7- and 14-fold increases in fucoxanthin and [beta]-carotene compared to the control, respectively. Of note, MJ (0.5 mg/l) increased the EPA content of all diatom species compared to their controls. These results indicate that phytohormone-based treatments can be used to alter the pigment and lipid content of microalgae, which tend to respond in dose- and species-specific manners to individual compounds.
Journal Article
Influence of exogenous phytohormone supplementation on the pigment and fatty acid content of three marine diatoms
2022
Diatoms are ubiquitous photosynthetic microorganisms with great potential for biotechnological applications. However, their commercialisation is hampered by production costs, requiring hence optimisation of cultivation methods. Phytohormones are plant growth regulators which may be used to influence physiological processes in microalgae, including diatoms. In this study, the model species Phaeodactylum tricornutum (Phaeodactylaceae) and two Irish isolates of Stauroneis sp. (Stauroneidaceae) and Nitzschia sp. (Bacillariaceae) were grown with varying amounts of the phytohormones indoleacetic acid (IAA), gibberellic acid (GA3), methyl jasmonate (MJ), abscisic acid (ABA) or salicylic acid (SA), and their influence on pigment and fatty acid profiles was monitored. The application of GA3 (200 mg/l) stimulated the growth of P. tricornutum which accumulated 52% more dry biomass compared to the control and concomitantly returned the highest eicosapentaenoic acid (EPA) yield (0.6 mg/l). The highest fucoxanthin yield (0.18 mg/l) was obtained for P. tricornutum cultivated with GA3 (2 mg/l) supplementation. In Stauroneis sp., SA (1 mg/l) had the most positive effect on EPA, the content of which was enhanced up to 45.7 [mu]g/mg (4.6% of total dry weight). The SA (1 mg/l) treatment also boosted carotenogenesis in Nitzschia sp., leading to 1.7- and 14-fold increases in fucoxanthin and [beta]-carotene compared to the control, respectively. Of note, MJ (0.5 mg/l) increased the EPA content of all diatom species compared to their controls. These results indicate that phytohormone-based treatments can be used to alter the pigment and lipid content of microalgae, which tend to respond in dose- and species-specific manners to individual compounds.
Journal Article
Bioactivity of Amphidinol-Containing Extracts of Amphidinium carterae Grown Under Varying Cultivation Conditions
by
Fierli, David
,
Barone, Maria Elena
,
Campanile, Floriana
in
Amphidinium carterae
,
Antifungal activity
,
Antifungal agents
2024
Microalgae are of great interest due to their ability to produce valuable compounds, such as pigments, omega-3 fatty acids, antioxidants, and antimicrobials. The dinoflagellate genus Amphidinium is particularly notable for its amphidinol-like compounds, which exhibit antibacterial and antifungal properties. This study utilized a two-stage cultivation method to grow Amphidinium carterae CCAP 1102/8 under varying conditions, such as blue LED light, increased salinity, and the addition of sodium carbonate or hydrogen peroxide. After cultivation, the biomass was extracted and fractionated using solid-phase extraction, yielding six fractions per treatment. These fractions were analyzed using Liquid Chromatography—High-Resolution Mass Spectrometry (LC-HRMS/MS) to identify their chemical components. Key amphidinol compounds (AM-B, AM-C, AM-22, and AM-A) were identified, with AM-B being the most abundant in Fraction 4, followed by AM-C. Fraction 5 also contained a significant amount of AM-C along with an unknown compound. Fraction 4 returned the highest antimicrobial activity against the pathogens Staphylococcus aureus, Enterococcus faecalis, and Candida albicans, with Minimal Biocidal Concentrations (MBCs) ranging from 1 to 512 µg/mL. Results indicate that the modulation of both amphidinol profile and fraction bioactivity can be induced by adjusting the cultivation parameters used to grow two-stage batch cultures of A. carterae.
Journal Article
Comparative Response of Marine Microalgae to H2O2-Induced Oxidative Stress
by
Fierli, David
,
Barone, Maria Elena
,
Herbert, Helen
in
Algae
,
Antioxidants
,
Aquatic microorganisms
2021
There have been growing interests in the biorefining of bioactive compounds from marine microalgae, including pigments, omega-3 fatty acids or antioxidants for use in the nutraceutical and cosmetic sectors. This study focused on the comparative responses of five marine microalgal species from different lineages, including the dinoflagellate Amphidinium carterae, chlorophyte Brachiomonas submarina, diatom Stauroneis sp., haptophyte Diacronema sp. and rhodophyte Rhodella violacea, to exposure during their batch growth to hydrogen peroxide (H2O2). A. carterae returned an enhanced signal with the DPPH assay (8.8 µmol Trolox eq/g DW) when exposed to H2O2, which was associated with reduced pigment yields and increased proportions in saturated C16 and C18 fatty acids. B. submarina showed enhanced antioxidant response upon exposure to H2O2 with the DPPH assay (10 µmol Trolox eq/g DW), a threefold decrease in lutein (from 2.3 to 0.8 mg/g) but a twofold increase in chlorophyll b (up to 30.0 mg/g). Stauroneis sp. showed a downward response for the antioxidant assays, but its pigment yields did not vary significantly from the control. Diacronema sp. showed reduced antioxidant response and fucoxanthin content (from 4.0 to 0.2 mg/g) when exposed to 0.5 mM H2O2. R. violacea exposed to H2O2 returned enhanced antioxidant activity and proportions of EPA but was not significantly impacted in terms of pigment content. Results indicate that H2O2 can be used to induce stress and initiate metabolic changes in microalgae. The responses were however species-specific, which would require further dosage optimisation to modulate the yields of specific metabolites in individual species.
Journal Article
Exploring the relationship between GBA1 host genotype and gut microbiome in the GBA1L444P/WT mouse model: implications for Parkinson’s disease pathogenesis
by
Meslier, Victoria
,
Pons, Nicolas
,
David, Aymeric
in
glucocerebrosidase
,
gut microbiome
,
microbiota-gut-brain axis
2025
BackgroundHeterozygous variants in GBA1 are the commonest genetic risk factor for Parkinson’s disease (PD), but penetrance is incomplete. GBA1 dysfunction can cause gastrointestinal disturbances and microbiome changes in preclinical models. Mounting evidence suggests that the microbiota–gut–brain axis is potentially implicated in PD pathogenesis. Whether the gut microbiome composition is influenced by host GBA1 genetics in heterozygosis has never been explored.ObjectivesThis study aimed to evaluate whether heterozygosity for the GBA1 pathogenic L444P variant can cause perturbations in gut microbiome composition.MethodsFaecal samples collected from GBA1L444P/WT and GBA1WT/WT mice at 3 and 6 months of age were analysed through shotgun metagenomic sequencing.ResultsNo differences in α- and β-diversities were detected between genotyped groups, at either time point. Overall, we found a little variation in the gut microbiome composition and functional potential between GBA1L444P/WT and GBA1WT/WT mice over time.ConclusionHost GBA1 genotype does not impact gut microbiome structure and composition in the presented GBA1L444P/WT mouse model. Studies investigating the effect of a second hit on gut physiology and microbiome composition could explain the partial penetrance of GBA1 variants in PD.
Journal Article
Exploring the relationship between GBA1 host genotype and gut microbiome in the GBA1 L444P/WT mouse model: implications for Parkinson's disease pathogenesis
2025
Heterozygous variants in
are the commonest genetic risk factor for Parkinson's disease (PD), but penetrance is incomplete.
dysfunction can cause gastrointestinal disturbances and microbiome changes in preclinical models. Mounting evidence suggests that the microbiota-gut-brain axis is potentially implicated in PD pathogenesis. Whether the gut microbiome composition is influenced by host
genetics in heterozygosis has never been explored.
This study aimed to evaluate whether heterozygosity for the
pathogenic L444P variant can cause perturbations in gut microbiome composition.
Faecal samples collected from
and
mice at 3 and 6 months of age were analysed through shotgun metagenomic sequencing.
No differences in
- and
-diversities were detected between genotyped groups, at either time point. Overall, we found a little variation in the gut microbiome composition and functional potential between
and
mice over time.
Host
genotype does not impact gut microbiome structure and composition in the presented
mouse model. Studies investigating the effect of a second hit on gut physiology and microbiome composition could explain the partial penetrance of
variants in PD.
Journal Article
Atmospheric composition of West Africa: highlights from the AMMA international program
2011
The atmospheric composition of West Africa reflects the interaction of various dynamical and chemical systems (i.e. biogenic, urban, convective and long‐range transport) with signatures from local to continental scales. Recent measurements performed during the African Monsoon Multidisciplinary Analyses (AMMA) observational periods in 2005 and 2006 provide new data which has allowed new insight into the processes within these systems that control the distribution of ozone and its precursors. Using these new data and recently published results, we provide an overview of these systems with a particular emphasis on ozone distributions over West Africa during the wet season. Copyright © 2010 Royal Meteorological Society
Journal Article
Exploring the relationship between GBA1 host genotype and gut microbiome in the GBA1L444P/WT mouse model: Implications for Parkinson disease pathogenesis
2024
Heterozygous variants in GBA1 are the commonest genetic risk factor for Parkinson disease (PD) but penetrance is incomplete. GBA1 dysfunction can cause gastrointestinal disturbances and microbiome changes in preclinical models. Mounting evidence suggests that the microbiota-gut-brain axis is potentially implicated in PD pathogenesis. Whether the gut microbiome composition is influenced by host GBA1 genetics in heterozygosis has never been explored.
To evaluate whether heterozygosity for the GBA1 pathogenic L444P variant can cause perturbations in gut microbiome composition.
Faecal samples collected from GBA1L444P/WT and GBA1WT/WT mice at 3 and 6 months of age were analysed through shotgun metagenomic sequencing.
No differences in α- and β-diversity were detected between genotyped groups, at either time points. Overall, we found a little variation of the gut microbiome composition and functional potential between GBA1L444P/WT and GBA1WT/WT mice over time.
Host GBA1 genotype does not impact gut microbiome structure and composition in the presented GBA1L444P/WT mouse model. Studies investigating the effect of a second hit on gut physiology and microbiome composition could explain the partial penetrance of GBA1 variants in PD.