Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
151 result(s) for "Fierrez, Julian"
Sort by:
Exploring facial expressions and action unit domains for Parkinson detection
Patients suffering from Parkinson's disease (PD) present a reduction in facial movements called hypomimia. In this work, we propose to use machine learning facial expression analysis from face images based on action unit domains to improve PD detection. We propose different domain adaptation techniques to exploit the latest advances in automatic face analysis and face action unit detection. Three different approaches are explored to model facial expressions of PD patients: (i) face analysis using single frame images and also using sequences of images, (ii) transfer learning from face analysis to action units recognition, and (iii) triplet-loss functions to improve the automatic classification between patients and healthy subjects. Real face images from PD patients show that it is possible to properly model elicited facial expressions using image sequences (neutral, onset-transition, apex, offset-transition, and neutral) with accuracy improvements of up to 5.5% (from 72.9% to 78.4%) with respect to single-image PD detection. We also show that our proposed action unit domain adaptation provides improvements of up to 8.9% (from 78.4% to 87.3%) with respect to face analysis. Finally, we also show that triplet-loss functions provide improvements of up to 3.6% (from 78.8% to 82.4%) with respect to action unit domain adaptation applied upon models created from scratch. The code of the experiments is available at https://github.com/luisf-gomez/Explorer-FE-AU-in-PD. Domain adaptation via transfer learning methods seem to be a promising strategy to model hypomimia in PD patients. Considering the good results and also the fact that only up to five images per participant are considered in each sequence, we believe that this work is a step forward in the development of inexpensive computational systems suitable to model and quantify problems of PD patients in their facial expressions.
Benchmarking desktop and mobile handwriting across COTS devices: The e-BioSign biometric database
This paper describes the design, acquisition process and baseline evaluation of the new e-BioSign database, which includes dynamic signature and handwriting information. Data is acquired from 5 different COTS devices: three Wacom devices (STU-500, STU-530 and DTU-1031) specifically designed to capture dynamic signatures and handwriting, and two general purpose tablets (Samsung Galaxy Note 10.1 and Samsung ATIV 7). For the two Samsung tablets, data is collected using both pen stylus and also the finger in order to study the performance of signature verification in a mobile scenario. Data was collected in two sessions for 65 subjects, and includes dynamic information of the signature, the full name and alpha numeric sequences. Skilled forgeries were also performed for signatures and full names. We also report a benchmark evaluation based on e-BioSign for person verification under three different real scenarios: 1) intra-device, 2) inter-device, and 3) mixed writing-tool. We have experimented the proposed benchmark using the main existing approaches for signature verification: feature- and time functions-based. As a result, new insights into the problem of signature biometrics in sensor-interoperable scenarios have been obtained, namely: the importance of specific methods for dealing with device interoperability, and the necessity of a deeper analysis on signatures acquired using the finger as the writing tool. This e-BioSign public database allows the research community to: 1) further analyse and develop signature verification systems in realistic scenarios, and 2) investigate towards a better understanding of the nature of the human handwriting when captured using electronic COTS devices in realistic conditions.
Handwriting Biometrics: Applications and Future Trends in e-Security and e-Health
Online handwritten analysis presents many applications in e-security, signature biometrics being the most popular but not the only one. Handwriting analysis also has an important set of applications in e-health. Both kinds of applications (e-security and e-health) have some unsolved questions and relations among them that should be addressed in the next years. We summarize the state of the art and applications based on handwriting signals. Later on, we focus on the main achievements and challenges that should be addressed by the scientific community, providing a guide for future research. Among all the points discussed in this article, we remark the importance of considering security, health, and metadata from a joint perspective. This is especially critical due to the risks inherent when using these behavioral signals.
Aging in Biometrics: An Experimental Analysis on On-Line Signature
The first consistent and reproducible evaluation of the effect of aging on dynamic signature is reported. Experiments are carried out on a database generated from two previous datasets which were acquired, under very similar conditions, in 6 sessions distributed in a 15-month time span. Three different systems, representing the current most popular approaches in signature recognition, are used in the experiments, proving the degradation suffered by this trait with the passing of time. Several template update strategies are also studied as possible measures to reduce the impact of aging on the system's performance. Different results regarding the way in which signatures tend to change with time, and their most and least stable features, are also given.
A multimodal dataset for understanding the impact of mobile phones on remote online virtual education
This work presents the IMPROVE dataset, a multimodal resource designed to evaluate the effects of mobile phone usage on learners during online education. It includes behavioral, biometric, physiological, and academic performance data collected from 120 learners divided into three groups with different levels of phone interaction, enabling the analysis of the impact of mobile phone usage and related phenomena such as nomophobia. A setup involving 16 synchronized sensors—including EEG, eye tracking, video cameras, smartwatches, and keystroke dynamics—was used to monitor learner activity during 30-minute sessions involving educational videos, document reading, and multiple-choice tests. Mobile phone usage events, including both controlled interventions and uncontrolled interactions, were labeled by supervisors and refined through a semi-supervised re-labeling process. Technical validation confirmed signal quality, and statistical analyses revealed biometric changes associated with phone usage. The dataset is publicly available for research through GitHub and Science Data Bank, with synchronized recordings from three platforms (edBB, edX, and LOGGE), provided in standard formats (.csv, .mp4, .wav, and .tsv), and accompanied by a detailed guide.
OTB-morph: One-time Biometrics via Morphing
Cancelable biometrics are a group of techniques to transform the input biometric to an irreversible feature intentionally using a transformation function and usually a key in order to provide security and privacy in biometric recognition systems. This transformation is repeatable enabling subsequent biometric comparisons. This paper introduces a new idea to be exploited as a transformation function for cancelable biometrics aimed at protecting templates against iterative optimization attacks. Our proposed scheme is based on time-varying keys (random biometrics in our case) and morphing transformations. An experimental implementation of the proposed scheme is given for face biometrics. The results confirm that the proposed approach is able to withstand leakage attacks while improving the recognition performance.
Mobile signature verification: feature robustness and performance comparison
In this study, the effects of using handheld devices on the performance of automatic signature verification systems are studied. The authors compare the discriminative power of global and local signature features between mobile devices and pen tablets, which are the prevalent acquisition device in the research literature. Individual feature discriminant ratios and feature selection techniques are used for comparison. Experiments are conducted on standard signature benchmark databases (BioSecure database) and a state-of-the-art device (Samsung Galaxy Note). Results show a decrease in the feature discriminative power and a higher verification error rate on handheld devices. It is found that one of the main causes of performance degradation on handheld devices is the absence of pen-up trajectory information (i.e. data acquired when the pen tip is not in contact with the writing surface).
Symbolic AI for XAI: Evaluating LFIT Inductive Programming for Explaining Biases in Machine Learning
Machine learning methods are growing in relevance for biometrics and personal information processing in domains such as forensics, e-health, recruitment, and e-learning. In these domains, white-box (human-readable) explanations of systems built on machine learning methods become crucial. Inductive logic programming (ILP) is a subfield of symbolic AI aimed to automatically learn declarative theories about the processing of data. Learning from interpretation transition (LFIT) is an ILP technique that can learn a propositional logic theory equivalent to a given black-box system (under certain conditions). The present work takes a first step to a general methodology to incorporate accurate declarative explanations to classic machine learning by checking the viability of LFIT in a specific AI application scenario: fair recruitment based on an automatic tool generated with machine learning methods for ranking Curricula Vitae that incorporates soft biometric information (gender and ethnicity). We show the expressiveness of LFIT for this specific problem and propose a scheme that can be applicable to other domains. In order to check the ability to cope with other domains no matter the machine learning paradigm used, we have done a preliminary test of the expressiveness of LFIT, feeding it with a real dataset about adult incomes taken from the US census, in which we consider the income level as a function of the rest of attributes to verify if LFIT can provide logical theory to support and explain to what extent higher incomes are biased by gender and ethnicity.