Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
45 result(s) for "Fikry, Mohammad"
Sort by:
An Overview of Multi-Criteria Decision Analysis (MCDA) Application in Managing Water-Related Disaster Events: Analyzing 20 Years of Literature for Flood and Drought Events
This paper provides an overview of multi-criteria decision analysis (MCDA) applications in managing water-related disasters (WRD). Although MCDA has been widely used in managing natural disasters, it appears that no literature review has been conducted on the applications of MCDA in the disaster management phases of mitigation, preparedness, response, and recovery. Therefore, this paper fills this gap by providing a bibliometric analysis of MCDA applications in managing flood and drought events. Out of 818 articles retrieved from scientific databases, 149 articles were shortlisted and analyzed using a Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) approach. The results show a significant growth in MCDA applications in the last five years, especially in managing flood events. Most articles focused on the mitigation phase of DMP, while other phases of preparedness, response, and recovery remained understudied. The analytical hierarchy process (AHP) was the most common MCDA technique used, followed by mixed-method techniques and TOPSIS. The article concludes the discussion by identifying a number of opportunities for future research in the use of MCDA for managing water-related disasters.
The combined effect of coating treatments to nisin, nano-silica, and chitosan on oxidation processes of stored button mushrooms at 4 °C
Agaricus bisporus is an edible fungus with a limited shelf life due to high moisture loss, browning, respiration, self-dissolve, lack of physical protection, rotting, and microbial attack. Mushrooms have been coated with nisin, nano-silica, and chitosan films in order to extend the shelf life, preserve quality and oxidation activities. The results showed that treating the mushrooms with chitosan and nano-silica (CH-AN-SILICA) increased superoxide dismutase activity (SOD—6.53 U kg −1 ), total phenolic content (TPC—0.39 g kg −1 ), and malondialdehyde content (MDA—1.63 µmol kg −1 ). CH-AN-SILICA treatment exhibited the highest scavenging against 2,2-Diphenyl-1-picrylhydrazyl (DPPH) and 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radicals. While, CH-AN-SILICA with the addition of nisin as an antimicrobial agent preserved almost the reactive oxygen species such as hydroxyl radicals (OH—0.33 µmol g −1 ), superoxide anion (O 2 •− —0.271 mmol s −1  kg −1 ), and hydrogen peroxide (H 2 O 2 —21.54 µmol g −1 ). Besides, both CH-AN-SILICA and CH-AN-SILICA/N enhanced the catalase (CAT) activity and reduced the respiration rate. The results indicated that the combination of nisin, nano-silica, and chitosan coating films was effective in providing a longer storage life with acceptable quality in mushrooms.
Numerical Simulation for Durability of a Viscoelastic Polymer Material Subjected to Variable Loadings Fatigue Based on Entropy Damage Criterion
This study aims to explore the impact of load history on the premature failure of the viscoelastic polymer matrix in carbon-fiber-reinforced plastics (CFRPs) using a method based on the concept of fracture fatigue entropy (FFE). A user-defined subroutine (UMAT) developed by the authors in previous studies was incorporated to apply the FFE damage criterion using ABAQUS software. Several variable-amplitude load modes, including frequent load amplitude changes and intermittent interruptions, were designed based on the conventional linear damage accumulation method (Palmgren–Miner rule), and the fatigue life under these loadings was obtained via numerical simulations. The results show that both frequent amplitude changes and even brief pauses in loading can accelerate damage accumulation, leading to premature failure of the polymer matrix. In these scenarios, the fatigue life ranged from 33.6% to 91.9% of the predictions made using the Palmgren–Miner rule, which shows significant variation and highlights cases in which the predicted fatigue life falls far short of expectations. This study offers a more practical and reliable approach for predicting fatigue life under complex loading conditions. Since the accuracy of the FFE criterion has been comprehensively validated in previous studies, this research focuses on its application to predict failure under variable loading conditions.
Enhancement in physicochemical parameters and microbial populations of mushrooms as influenced by nano-coating treatments
White button mushrooms are greatly high perishable and can deteriorate within a few days after harvesting due to physicomechanical damage, respiration, microbial growth of the delicate epidermal structure. For that reason, the present research work was applied to evaluate the effect of chitosan combination with nano-coating treatments on physicochemical parameters and microbial populations on button mushrooms at chilling storage. Nano coating with the addition of nisin 1% (CHSSN/M) established the minimum value for weight loss 12.18%, maintained firmness 11.55 N, and color index profile. Moreover, O 2 % rate of (CHSSN/M) mushrooms was the lowest at 1.78%; while the highest rate was reported for CO 2 24.88% compared to the untreated samples (Control/M) on day 12. Both pH and total soluble solid concentrations increased during storage. Results reported that the (CHSS/M) mushroom significantly (P < 0.05) reduced polyphenol oxidase activity (24.31 U mg −1 Protein) compared with (Control/M) mushrooms that increased faster than the treated samples. (CHSSN/M) treatment was the most efficient in the reduction of yeast and mold, aerobic plate microorganisms (5.27–5.10 log CFU/g), respectively. The results established that nano-coating film might delay the aging degree and accompany by marked prolongation of postharvest mushroom freshness.
Numerical Simulation of the Frequency Dependence of Fatigue Failure for a Viscoelastic Medium Considering Internal Heat Generation
Accurately predicting fatigue failure in CFRP laminates requires an understanding of the cyclic behavior of their resin matrix, which plays a crucial role in the materials’ overall performance. This study focuses on the temperature elevation during the cyclic loadings of the resin, driven by inelastic deformations that increase the dissipated energy. At low loading frequencies, the dissipated energy is effectively released as heat, preventing significant temperature rise and maintaining a consistent, balanced thermal state. However, at higher frequencies, the rate of energy dissipation exceeds the system’s ability to release heat, causing temperature accumulation and accelerating damage progression. To address this issue, the study incorporates non-recoverable strain into a fatigue simulation framework, enabling the accurate modeling of the temperature-dependent fatigue behavior. At 0.1 Hz, damage accumulates rapidly due to significant inelastic deformation per cycle. As the frequency increases to around 2 Hz, the number of cycles until failure rises, indicating reduced damage per cycle. Beyond 2 Hz, higher frequencies result in accelerated temperature rises and damage progression. These findings emphasize the strong link between the loading frequency, non-recoverable strain, and temperature elevation, providing a robust tool for analyzing resin behavior. This approach represents an advancement in simulating the fatigue behavior of resin across a range of frequencies, offering insights for more reliable fatigue life predictions.
Numerical Simulations for Damage and Failure of a Polymer Material Subjected to Thermal Fatigue Loading
This study proposes a novel numerical approach to simulate damage accumulation and failure in polymer materials under thermal fatigue, using an entropy-based damage criterion. Unlike the many experimental studies in this area, few numerical simulations exist due to the complexity of modeling thermal fatigue. In our method, thermal and mechanical stresses arising from thermal expansion mismatches and temperature gradients are modeled through a coupled simulation approach. A viscoelastic constitutive equation is implemented in ABAQUS via a user-defined subroutine to capture damage progression. The method includes surface and internal thermal conduction, thermal deformation, and time–temperature superposition using reduced viscosity, enabling accurate simulation under varying thermal conditions. The results show that localized thermal stresses induced by temperature gradients lead to progressive damage and failure. This study demonstrates the first successful numerical simulation of thermal fatigue-induced damage in polymer materials. The proposed framework reduces the need for extensive experiments and offers insights into residual stress prediction and durability evaluation, contributing to polymer design and application in high-performance environments.
Numerical Simulation of Fatigue Damage in Cross-Ply CFRP Laminates: Exploring Frequency Dependence and Internal Heat Generation Effects
A numerical simulation investigating the frequency dependence of fatigue damage progression in carbon fiber-reinforced plastics (CFRPs) is conducted in this study. The initiation and propagation of transverse cracks under varying fatigue test frequencies are successfully simulated, consistent with experiments, using an enhanced degradable Hashin failure model that was originally developed by the authors in 2022. The results obtained from the numerical simulation in the present study, which employs adjusted numerical values for the purpose of damage acceleration, indicate that the number of cycles required for the formation of three transverse cracks was 174 cycles at 0.1 Hz, 209 cycles at 1 Hz, and 165 cycles at 10 Hz. Based on these results, it is demonstrated that under high-frequency cyclic loading, internal heat generation caused by dissipated energy from mechanical deformation, attributed to the viscoelastic and/or plastic behavior of the material, exceeds thermal dissipation to the environment, leading to an increase in specimen temperature. Consequently, damage progression accelerates under high-frequency fatigue. In contrast, under low-frequency fatigue, viscoelastic dissipation becomes more pronounced, reducing the number of cycles required to reach a similar damage state. The rate of damage accumulation initially increases with test frequency but subsequently decreases. This observation underscores the importance of incorporating these findings into discussions on the fatigue damage of real structural components.
Numerical and Experimental Studies for Fatigue Damage Accumulation of CFRP Cross-Ply Laminates Based on Entropy Failure Criterion
The transverse cracking behavior of a carbon-fiber-reinforced plastic (CFRP) cross-ply laminate is investigated using a fatigue test and an entropy-based failure criterion in this study. The results of fatigue experiments show that the crack accumulation behavior depends on the cyclic number level and frequency, in which two obvious transverse cracks are observed after 104 cyclic loads and 37 transverse cracks occur after 105 cycles. The final numbers of transverse cracks decrease from 29 to 11 when the load frequency increases from 5 Hz to 10 Hz. An entropy-based failure criterion is proposed to predict the long-term lifetime of laminates under cyclic loadings. The transverse strength of 90° ply is approximated by the Weibull distribution for a realistic simulation. Progressive damage and transverse cracking behavior in CFRP ply can be reproduced due to entropy generation and strength degradation. The effects of stress level and load frequency on the transverse cracking behavior are investigated. It is discovered that, at the edge, the stress σ22 + σ33 that is a dominant factor for matrix tensile failure mode is greater than the interior at the first cycle load, and as stress levels rise, a transverse initial crack forms sooner. However, the initial transverse crack initiation is delayed as load frequencies increase. In addition, transverse crack density increases quickly after initial crack formation and then increases slowly with the number of load cycles. The proposed method’s results agree well with those of the existing experimental method qualitatively. In addition, the proposed entropy-based failure criterion can account for the effect of load frequency on transverse crack growth rate, which cannot be addressed by the well-known Paris law.
Optimization of the Frying Temperature and Time for Preparation of Healthy Falafel Using Air Frying Technology
Air-frying is an innovative technique for food frying that uses hot air circulation to prepare healthy products. The objectives of this study were to establish simplified models to reflect the efficacy of the air frying process at varying temperatures and times on the quality attributes of falafel, and to optimize the frying conditions for producing air-fried falafel. Moisture content, color, fat content, hardness, and sensory evaluation of the fried falafel were analyzed under varied temperatures (140 °C, 170 °C, and 200 °C) and time periods (5 min, 10 min, and 15 min). Statistical analysis was then applied to obtain the best fit model that can describe the properties of fried falafel. Results indicated that moisture content, fat content, and L*-value of air-fried falafel were adversely related to the frying temperature and time, but the hardness and ΔE of fried falafel were increased as the frying temperature and time increased. Moreover, an increase followed by a decrease was shown for the appearance, aroma, crispness, taste, and overall preference scores with the increase in frying temperature and time. The regression analysis showed that the proposed models could be properly used for predicting the properties of the fried falafel. In addition, the overlaid plots resulted in the optimum frying temperature of 178.8 °C and time of 11.1 min. Interestingly, the fat content of the air-fried falafel reduced by 45% at optimal frying conditions compared with that for the deep-fat fried one at 180 °C for 7 min (control). In comparison, the air-fried falafel was lower in fat content, higher in hardness with more acceptable appearance and crispness scores than deep-fat fried falafel. Such information could be beneficial to the manufacturers of the falafel to produce an optimal and healthy product.
Mechanistic insights into the augmented effect of bone marrow mesenchymal stem cells and thiazolidinediones in streptozotocin-nicotinamide induced diabetic rats
This study was designed to assess whether the protective effects of bone marrow-derived mesenchymal stem cells (MSCs) against diabetes could be enhanced by pioglitazone (PIO), a PPARγ agonist. Combined MSCs and PIO treatments markedly improved fasting blood glucose, body weight, lipid profile levels, insulin level, insulin resistance, β cell function. Those protective effects also attenuated both pancreatic lesions and fibrosis in diabetic rats and decreased the depletion of pancreatic mediators of glycemic and lipid metabolism including peroxisome proliferator-activated receptor alpha (PPARα), PGC-1α, GLP-1 and IRS-2. Cardiac biogenesis of diabetic groups was also improved with MSCs and/or PIO treatments as reflected by the enhanced up-regulation of the expressions of cardiac IRS1, Glucose transporter 4, PGC-1, PPARα and CPT-1 genes and the down-regulated expression of lipogenic gene SREBP. The combination of MSCs and PIO also potentiated the decrease of abnormal myocardial pathological lesions in diabetic rats. Similarly, the inhibitory effects of MSCs on diabetic cardiac fibrosis and on the up regulations of TGF-β, collagen I and III gene expressions were partial but additive when combined with PIO. Therefore, combined therapy with PIO and BMCs transplantation could further potentiate the protective benefit of MSCs against diabetes and cardiac damage compared to MSCs monotherapy.