Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
26
result(s) for
"Filippetto, D"
Sort by:
Maximum current density and beam brightness achievable by laser-driven electron sources
2014
This paper discusses the extension to different electron beam aspect ratio of the Child-Langmuir law for the maximum achievable current density in electron guns. Using a simple model, we derive quantitative formulas in good agreement with simulation codes. The new scaling laws for the peak current density of temporally long and transversely narrow initial beam distributions can be used to estimate the maximum beam brightness and suggest new paths for injector optimization.
Journal Article
Virtual-diagnostic-based time stamping for ultrafast electron diffraction
2023
In this work, nondestructive virtual diagnostics are applied to retrieve the electron beam time of arrival and energy in a relativistic ultrafast electron diffraction (UED) beamline using independently measured machine parameters. This technique has the potential to improve the temporal resolution of pump and probe UED scans. Fluctuations in time of arrival have multiple components, including a shot-to-shot jitter and a long-term drift which can be separately addressed by closed loop feedback systems. A linear-regression-based model is used to fit the beam energy and time of arrival and is shown to be able to predict accurate behavior for both long- and short-time scales. More advanced time-series analysis based on machine learning techniques can be applied to improve this prediction further.
Journal Article
Ultrafast Relativistic Electron Nanoprobes
by
Musumeci, P.
,
Minor, A. M.
,
Filippetto, D.
in
639/301/930/12
,
639/766/930/2735
,
639/925/930/2735
2019
One of the frontiers in electron scattering is to couple ultrafast temporal resolution with highly localized probes to investigate the role of microstructure on material properties. Here, taking advantage of the high average brightness of our electron source, we demonstrate the generation of ultrafast relativistic electron beams with picometer-scale emittance and their ability to probe nanoscale features on materials with complex microstructures. The electron beam is tightly focused at the sample plane by a custom in-vacuum lens system, and its evolution around the waist is accurately reconstructed. We then use the focused beam to characterize a Ti-6 wt% Al polycrystalline sample by correlating the diffraction and imaging modality, showcasing the capability to locate grain boundaries and map adjacent crystallographic domains with sub-micron precision. This work provides a paradigm for ultrafast electron instrumentation, enabling characterization techniques such as relativistic ultrafast electron nano-diffraction and ultrafast scanning transmission electron microscopy.
Electrons have been used to map the structural properties of materials since the discovery of the particle-wave duality, while recent advances in ultrafast electron sources enabled time-resolved electron scattering techniques to probe atomic-scale structural dynamics with femtosecond temporal accuracy. The authors demonstrate ultrafast nano-diffraction with relativistic beams as well as scanning transmission electron microscopy enabling them to probe the micro-texture in complex heterogeneous materials.
Journal Article
Relativistic ultrafast electron diffraction at high repetition rates
2023
The ability to resolve the dynamics of matter on its native temporal and spatial scales constitutes a key challenge and convergent theme across chemistry, biology, and materials science. The last couple of decades have witnessed ultrafast electron diffraction (UED) emerge as one of the forefront techniques with the sensitivity to resolve atomic motions. Increasingly sophisticated UED instruments are being developed that are aimed at increasing the beam brightness in order to observe structural signatures, but so far they have been limited to low average current beams. Here, we present the technical design and capabilities of the HiRES (High Repetition-rate Electron Scattering) instrument, which blends relativistic electrons and high repetition rates to achieve orders of magnitude improvement in average beam current compared to the existing state-of-the-art instruments. The setup utilizes a novel electron source to deliver femtosecond duration electron pulses at up to MHz repetition rates for UED experiments. Instrument response function of sub-500 fs is demonstrated with < 100 fs time resolution targeted in future. We provide example cases of diffraction measurements on solid-state and gas-phase samples, including both micro- and nanodiffraction (featuring 100 nm beam size) modes, which showcase the potential of the instrument for novel UED experiments.
Journal Article
Chromatic effects in quadrupole scan emittance measurements
2012
A reliable transverse emittance measurement for high-brightness electron beams is of utmost importance for the successful development of fourth generation light sources and for the beam transport in plasma-based accelerators. When the beam exhibits a significant energy spread, typical quadrupole scan emittance measurements may be affected depending on the beam properties and on the quadrupoles arrangement. The emittance degradation induced by chromatic effects in measurements involving magnetic lattices is evaluated analytically for different configurations. Analytical and numerical calculations compared with measurements have been used to evaluate the consequent error on the emittance value measured for single and double quadrupole schemes and for typical operating conditions at the SPARC facility.
Journal Article
Dark current studies on a normal-conducting high-brightness very-high-frequency electron gun operating in continuous wave mode
2015
We report on measurements and analysis of a field-emitted electron current in the very-high-frequency (VHF) gun, a room temperature rf gun operating at high field and continuous wave (CW) mode at the Lawrence Berkeley National Laboratory (LBNL). The VHF gun is the core of the Advanced Photo-injector Experiment (APEX) at LBNL, geared toward the development of an injector for driving the next generation of high average power x-ray free electron lasers. High accelerating fields at the cathode are necessary for the high-brightness performance of an electron gun. When coupled with CW operation, such fields can generate a significant amount of field-emitted electrons that can be transported downstream the accelerator forming the so-called “dark current.” Elevated levels of a dark current can cause radiation damage, increase the heat load in the downstream cryogenic systems, and ultimately limit the overall performance and reliability of the facility. We performed systematic measurements that allowed us to characterize the field emission from the VHF gun, determine the location of the main emitters, and define an effective strategy to reduce and control the level of dark current at APEX. Furthermore, the energy spectra of isolated sources have been measured. A simple model for energy data analysis was developed that allows one to extract information on the emitter from a single energy distribution measurement.
Journal Article
Advanced photoinjector experiment photogun commissioning results
2012
The Advanced Photoinjector Experiment (APEX) at the Lawrence Berkeley National Laboratory is dedicated to the development of a high-brightness high-repetition rate (MHz-class) electron injector for x-ray free-electron laser (FEL) and other applications where high repetition rates and high brightness are simultaneously required. The injector is based on a new concept rf gun utilizing a normal-conducting (NC) cavity resonating in the VHF band at 186 MHz, and operating in continuous wave (cw) mode in conjunction with high quantum efficiency photocathodes capable of delivering the required charge at MHz repetition rates with available laser technology. The APEX activities are staged in three phases. In phase 0, the NC cw gun is built and tested to demonstrate the major milestones to validate the gun design and performance. Also, starting in phase 0 and continuing in phase I, different photocathodes are tested at the gun energy and at full repetition rate for validating candidate materials to operate in a high-repetition rate FEL. In phase II, a room-temperature pulsed linac is added for accelerating the beam at several tens of MeV to reduce space charge effects and allow the measurement of the brightness of the beam from the gun when integrated in an injector scheme. The installation of the phase 0 beam line and the commissioning of the VHF gun are completed, phase I components are under fabrication, and initial design and specification of components and layout for phase II are under way. This paper presents the phase 0 commissioning results with emphasis on the experimental milestones that have successfully demonstrated the APEX gun capability of operating at the required performance.
Journal Article
Upgrade possibilities for continuous wave rf electron guns based on room-temperature very high frequency technology
by
Staples, J.
,
Sannibale, F.
,
Virostek, S.
in
Brightness
,
Continuous radiation
,
Electron diffraction
2017
The past decade was characterized by an increasing scientific demand for extending towards higher repetition rates (MHz class and beyond) the performance of already operating lower repetition rate accelerator-based instruments such as x-ray free electron lasers (FELs) and ultrafast electron diffraction (UED) and microscopy (UEM) instruments. Such a need stimulated a worldwide spread of a vibrant R&D activity targeting the development of high-brightness electron sources capable of operating at these challenging rates. Among the different technologies pursued, rf guns based on room-temperature structures resonating in the very high frequency (VHF) range (30–300 MHz) and operating in continuous wave successfully demonstrated in the past few years the targeted brightness and reliability. Nevertheless, recently proposed upgrades for x-ray FELs and the always brightness-frontier applications such as UED and UEM are now requiring a further step forward in terms of beam brightness in electron sources. In this paper, we present a few possible upgrade paths that would allow one to extend, in a relatively simple and cost-effective way, the performance of the present VHF technology to the required new goals.
Journal Article
Phase space analysis of velocity bunched beams
2011
Peak current represents a key demand for new generation electron beam photoinjectors. Many beam applications, such as free electron laser, inverse Compton scattering, terahertz radiation generation, have efficiencies strongly dependent on the bunch length and current. A method of beam longitudinal compression (called velocity bunching) has been proposed some years ago, based on beam longitudinal phase space rotation in a rf field potential. The control of such rotation can lead to a compression factor in excess of 10, depending on the initial longitudinal emittance. Code simulations have shown the possibility to fully compensate the transverse emittance growth during rf compression, and this regime has been experimentally proven recently at SPARC. The key point is the control of transverse beam plasma oscillations, in order to freeze the emittance at its lowest value at the end of compression. Longitudinal and transverse phase space distortions have been observed during the experiments, leading to asymmetric current profiles and higher final projected emittances. In this paper we discuss in detail the results obtained at SPARC in the regime of velocity bunching, analyzing such nonlinearities and identifying the causes. The beam degradation is discussed, both for slice and projected parameters. Analytical tools are derived to experimentally quantify the effect of such distortions on the projected emittance.
Journal Article