Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
LanguageLanguage
-
SubjectSubject
-
Item TypeItem Type
-
DisciplineDiscipline
-
YearFrom:-To:
-
More FiltersMore FiltersIs Peer Reviewed
Done
Filters
Reset
131
result(s) for
"Fink, James B."
Sort by:
A narrative review on trans-nasal pulmonary aerosol delivery
by
MacLoughlin, Ronan
,
Dhand, Rajiv
,
Li, Jie
in
Administration, Intranasal - instrumentation
,
Administration, Intranasal - methods
,
Administration, Intranasal - standards
2020
The use of trans-nasal pulmonary aerosol delivery via high-flow nasal cannula (HFNC) has expanded in recent years. However, various factors influencing aerosol delivery in this setting have not been precisely defined, and no consensus has emerged regarding the optimal techniques for aerosol delivery with HFNC. Based on a comprehensive literature search, we reviewed studies that assessed trans-nasal pulmonary aerosol delivery with HFNC by in vitro experiments, and in vivo, by radiolabeled, pharmacokinetic and pharmacodynamic studies. In these investigations, the type of nebulizer employed and its placement, carrier gas, the relationship between gas flow and patient’s inspiratory flow, aerosol delivery strategies (intermittent unit dose vs continuous administration by infusion pump), and open vs closed mouth breathing influenced aerosol delivery. The objective of this review was to provide rational recommendations for optimizing aerosol delivery with HFNC in various clinical settings.
Journal Article
Reducing Aerosol-Related Risk of Transmission in the Era of COVID-19: An Interim Guidance Endorsed by the International Society of Aerosols in Medicine
by
Martin, Andrew R.
,
McKiernan, Paul
,
Muellinger, Bernhard
in
Aerosols
,
COVID-19 - prevention & control
,
COVID-19 - transmission
2020
National and international guidelines recommend droplet/airborne transmission and contact precautions for those caring for coronavirus disease 2019 (COVID-19) patients in ambulatory and acute care settings. The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus, an acute respiratory infectious agent, is primarily transmitted between people through respiratory droplets and contact routes. A recognized key to transmission of COVID-19, and droplet infections generally, is the dispersion of bioaerosols from the patient. Increased risk of transmission has been associated with aerosol generating procedures that include endotracheal intubation, bronchoscopy, open suctioning, administration of nebulized treatment, manual ventilation before intubation, turning the patient to the prone position, disconnecting the patient from the ventilator, noninvasive positive-pressure ventilation, tracheostomy, and cardiopulmonary resuscitation. The knowledge that COVID-19 subjects can be asymptomatic and still shed virus, producing infectious droplets during breathing, suggests that health care workers (HCWs) should assume every patient is potentially infectious during this pandemic. Taking actions to reduce risk of transmission to HCWs is, therefore, a vital consideration for safe delivery of all medical aerosols. Guidelines for use of personal protective equipment (glove, gowns, masks, shield, and/or powered air purifying respiratory) during high-risk procedures are essential and should be considered for use with lower risk procedures such as administration of uncontaminated medical aerosols. Bioaerosols generated by infected patients are a major source of transmission for SARS CoV-2, and other infectious agents. In contrast, therapeutic aerosols do not add to the risk of disease transmission unless contaminated by patients or HCWs.
Journal Article
Dose Response to Transnasal Pulmonary Administration of Bronchodilator Aerosols via Nasal High-Flow Therapy in Adults with Stable Chronic Obstructive Pulmonary Disease and Asthma
by
Zhao, Minghua
,
Fink, James B.
,
Hadeer, Maierbati
in
Asthma
,
Bronchodilator agents
,
Clinical Investigations
2019
Background: There has been increasing interest in transnasal pulmonary aerosol administration, but the dose-response relationship has not been reported. Objectives: To determine the accumulative bronchodilator dose at which patients with stable mild-to-moderate asthma and chronic obstructive pulmonary disease (COPD) achieve similar spirometry responses before and after bronchodilator tests using albuterol via a metered dose inhaler with a valved holding chamber (MDI + VHC). Method: Adult patients who met ATS/ERS criteria for bronchodilator responses in pulmonary function laboratory were recruited and consented to participate. After a washout period, patients received escalating doubling dosages (0.5, 1, 2, and 4 mg) of albuterol in a total volume of 2 mL delivered by vibrating mesh nebulizer via a nasal cannula at 37°C with a flow rate of 15–20 L/min using a Venturi air entrainment device. Spirometry was measured at baseline and after each dose. Titration was stopped when an additional forced expiratory volume in 1 second (FEV 1 ) improvement was <5%. Results: 42 patients (16 males) with stable mild-to-moderate asthma (n = 29) and COPD (n = 13) were enrolled. FEV 1 increment after a cumulative dose of 1.5 mg of albuterol via nasal cannula at 15–20 L/min was similar to 4 actuations of MDI + VHC (0.34 ± 0.18 vs. 0.34 ± 0.12 L, p = 0.878). Using ATS/ERS criteria of the bronchodilator test, 33.3% (14/42) and 69% (29/42) of patients responded to 0.5 and 1.5 mg of albuterol, respectively. Conclusions: With a nasal cannula at 15–20 L/min, transnasal pulmonary delivery of 1.5 mg albuterol resulted in similar bronchodilator response as 4 actuations of MDI + VHC.
Journal Article
Practical strategies to reduce nosocomial transmission to healthcare professionals providing respiratory care to patients with COVID-19
by
Chen, Rongchang
,
Kaur, Ramandeep
,
Mirza, Sara
in
Aerosol-generating procedures
,
Aerosols
,
Aerosols - adverse effects
2020
Coronavirus disease (COVID-19) is an emerging viral infection that is rapidly spreading across the globe. SARS-CoV-2 belongs to the same coronavirus class that caused respiratory illnesses such as severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS). During the SARS and MERS outbreaks, many frontline healthcare workers were infected when performing high-risk aerosol-generating medical procedures as well as when providing basic patient care. Similarly, COVID-19 disease has been reported to infect healthcare workers at a rate of ~ 3% of cases treated in the USA. In this review, we conducted an extensive literature search to develop practical strategies that can be implemented when providing respiratory treatments to COVID-19 patients, with the aim to help prevent nosocomial transmission to the frontline workers.
Journal Article
Aerosol therapy in adult critically ill patients: a consensus statement regarding aerosol administration strategies during various modes of respiratory support
by
Lin, Hui-Ling
,
Fink, James B
,
Michotte, Jean-Bernard
in
Aerosols
,
Clinical outcomes
,
Drug administration
2023
BackgroundClinical practice of aerosol delivery in conjunction with respiratory support devices for critically ill adult patients remains a topic of controversy due to the complexity of the clinical scenarios and limited clinical evidence. ObjectivesTo reach a consensus for guiding the clinical practice of aerosol delivery in patients receiving respiratory support (invasive and noninvasive) and identifying areas for future research. MethodsA modified Delphi method was adopted to achieve a consensus on technical aspects of aerosol delivery for adult critically ill patients receiving various forms of respiratory support, including mechanical ventilation, noninvasive ventilation, and high-flow nasal cannula. A thorough search and review of the literature were conducted, and 17 international participants with considerable research involvement and publications on aerosol therapy, comprised a multi-professional panel that evaluated the evidence, reviewed, revised, and voted on recommendations to establish this consensus. ResultsWe present a comprehensive document with 20 statements, reviewing the evidence, efficacy, and safety of delivering inhaled agents to adults needing respiratory support, and providing guidance for healthcare workers. Most recommendations were based on in-vitro or experimental studies (low-level evidence), emphasizing the need for randomized clinical trials. The panel reached a consensus after 3 rounds anonymous questionnaires and 2 online meetings.ConclusionsWe offer a multinational expert consensus that provides guidance on the optimal aerosol delivery techniques for patients receiving respiratory support in various real-world clinical scenarios.
Journal Article
Optimizing high-flow nasal cannula flow settings in adult hypoxemic patients based on peak inspiratory flow during tidal breathing
2021
BackgroundOptimal flow settings during high-flow nasal cannula (HFNC) therapy are unknown. We investigated the optimal flow settings during HFNC therapy based on breathing pattern and tidal inspiratory flows in patients with acute hypoxemic respiratory failure (AHRF).MethodsWe conducted a prospective clinical study in adult hypoxemic patients treated by HFNC with a fraction of inspired oxygen (FIO2) ≥ 0.4. Patient’s peak tidal inspiratory flow (PTIF) was measured and HFNC flows were set to match individual PTIF and then increased by 10 L/min every 5–10 min up to 60 L/min. FIO2 was titrated to maintain pulse oximetry (SpO2) of 90–97%. SpO2/FIO2, respiratory rate (RR), ROX index [(SpO2/FIO2)/RR], and patient comfort were recorded after 5–10 min on each setting. We also conducted an in vitro study to explore the relationship between the HFNC flows and the tracheal FIO2, peak inspiratory and expiratory pressures.ResultsForty-nine patients aged 58.0 (SD 14.1) years were enrolled. At enrollment, HFNC flow was set at 45 (38, 50) L/min, with an FIO2 at 0.62 (0.16) to obtain an SpO2/FIO2 of 160 (40). Mean PTIF was 34 (9) L/min. An increase in HFNC flows up to two times of the individual patient’s PTIF, incrementally improved oxygenation but the ROX index plateaued with HFNC flows of 1.34–1.67 times the individual PTIF. In the in vitro study, when the HFNC flow was set higher than PTIF, tracheal peak inspiratory and expiratory pressures increased as HFNC flow increased but the FIO2 did not change.ConclusionMean PTIF values in most patients with AHRF were between 30 and 40 L/min. We observed improvement in oxygenation with HFNC flows set above patient PTIF. Thus, a pragmatic approach to set optimal flows in patients with AHRF would be to initiate HFNC flow at 40 L/min and titrate the flow based on improvement in ROX index and patient tolerance.Trial registration: ClinicalTrials.gov (NCT03738345). Registered on November 13th, 2018. https://clinicaltrials.gov/ct2/show/NCT03738345?term=NCT03738345&draw=2&rank=1
Journal Article
A randomized controlled trial of nebulized surfactant for the treatment of severe COVID-19 in adults (COVSurf trial)
2023
SARS-CoV-2 directly targets alveolar epithelial cells and can lead to surfactant deficiency. Early reports suggested surfactant replacement may be effective in improving outcomes. The aim of the study to assess the feasibility and efficacy of nebulized surfactant in mechanically ventilated COVID-19 patients. Patients were randomly assigned to receive open-labelled bovine nebulized surfactant or control (ratio 3-surfactant: 2-control). This was an exploratory dose–response study starting with 1080 mg of surfactant delivered at 3 time points (0, 8 and 24 h). After completion of 10 patients, the dose was reduced to 540 mg, and the frequency of nebulization was increased to 5/6 time points (0, 12, 24, 36, 48, and an optional 72 h) on the advice of the Trial Steering Committee. The co-primary outcomes were improvement in oxygenation (change in PaO
2
/FiO
2
ratio) and ventilation index at 48 h. 20 patients were recruited (12 surfactant and 8 controls). Demographic and clinical characteristics were similar between groups at presentation. Nebulized surfactant administration was feasible. There was no significant improvement in oxygenation at 48 h overall. There were also no differences in secondary outcomes or adverse events. Nebulized surfactant administration is feasible in mechanically ventilated patients with COVID-19 but did not improve measures of oxygenation or ventilation.
Journal Article
Influence of Mechanical Ventilation Modes on the Efficacy of Nebulized Bronchodilators in the Treatment of Intubated Adult Patients with Obstructive Pulmonary Disease
by
Leite, Wagner Souza
,
Lima, Cibelle Andrade
,
Bandeira, Monique Pontes
in
Aerosols
,
Analysis
,
Anesthesia
2023
Background: Little has been reported in terms of clinical outcomes to confirm the benefits of nebulized bronchodilators during mechanical ventilation (MV). Electrical Impedance Tomography (EIT) could be a valuable method to elucidate this gap. Objective: The purpose of this study is to evaluate the impact of nebulized bronchodilators during invasive MV with EIT by comparing three ventilation modes on the overall and regional lung ventilation and aeration in critically ill patients with obstructive pulmonary disease. Method: A blind clinical trial in which eligible patients underwent nebulization with salbutamol sulfate (5 mg/1 mL) and ipratropium bromide (0.5 mg/2 mL) in the ventilation mode they were receiving. EIT evaluation was performed before and after the intervention. A joint and stratified analysis into ventilation mode groups was performed, with p < 0.05. Results: Five of nineteen procedures occurred in controlled MV mode, seven in assisted mode and seven in spontaneous mode. In the intra-group analysis, the nebulization increased total ventilation in controlled (p = 0.04 and ⅆ = 2) and spontaneous (p = 0.01 and ⅆ = 1.5) MV modes. There was an increase in the dependent pulmonary region in assisted mode (p = 0.01 and ⅆ = 0.3) and in spontaneous mode (p = 0.02 and ⅆ = 1.6). There was no difference in the intergroup analysis. Conclusions: Nebulized bronchodilators reduce the aeration of non-dependent pulmonary regions and increase overall lung ventilation but there was no difference between the ventilation modes. As a limitation, it is important to note that the muscular effort in PSV and A/C PCV modes influences the impedance variation, and consequently the aeration and ventilation values. Thus, future studies are needed to evaluate this effort as well as the time on ventilator, time in UCI and other variables.
Journal Article
In-vitro and in-vivo comparisons of high versus low concentrations of inhaled epoprostenol to adult intubated patients
by
Augustynovich, Ashley E.
,
Gurnani, Payal K.
,
Li, Jie
in
Administration, Inhalation
,
Adult
,
Aerosols
2021
Background
Inhaled epoprostenol (iEPO) has been shown to reduce pulmonary artery pressure and improve oxygenation. iEPO is mainly delivered via a syringe pump with feed tubing connected to a vibrating mesh nebulizer with high or low formulation concentration delivery.
Methods
An in vitro study and a two-period retrospective case–control study were implemented. The in vitro study compared iEPO delivery via invasive ventilation at low concentrations of 7.5, and 15 mcg/mL and high concentration at 30 mcg/mL, to deliver the ordered dose of 30 and 50 ng/kg/min for three clinical scenarios with predicted body weight of 50, 70 and 90 kg. While in the clinical study, adult patients receiving iEPO via invasive ventilation to treat refractory hypoxemia, pulmonary hypertension, or right ventricular failure were included. 80 patients received low concentration iEPO at multiple concentrations (2.5, 7.5, and 15 mcg/mL, depending on the ordered dose) from 2015 to 2017, while 84 patients received high concentration iEPO at 30 mcg/mL from 2018 to 2019.
Results
In the in vitro study, there were no significant differences in aerosol deposition between high vs low concentrations of iEPO at a dose of 50 ng/kg/min. In the clinical study, age, gender, ethnicity, and indications for iEPO were similar between high and low concentration groups. After 30–120 min of iEPO administration, both delivery strategies significantly improved oxygenation in hypoxemic patients and reduced mean pulmonary arterial pressure (mPAP) for patients with pulmonary hypertension. However, no significant differences of the incremental changes were found between two delivery groups. Compared to low concentration, high concentration delivery group had better adherence to the iEPO weaning protocol (96% vs 71%, p < 0.001), fewer iEPO syringes utilized per patient (5 [3, 10] vs 12 [6, 22], p = 0.001), and shorter duration of invasive ventilation (6 [3, 12] vs 9 [5, 18] days, p = 0.028). Intensive care unit length of stay and mortality were similar between two groups.
Conclusion
Compared to low concentration delivery of iEPO, high concentration iEPO via a vibrating mesh nebulizer maintained clinical benefits and increased clinician compliance with an iEPO weaning protocol, required less medication preparation time, and shortened duration of invasive ventilation.
Journal Article