Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
166
result(s) for
"Fink, Louis M"
Sort by:
Non-Small Cell Lung Cancer Cells Expressing CD44 Are Enriched for Stem Cell-Like Properties
2010
The cancer stem cell theory hypothesizes that cancers are perpetuated by cancer stem cells (CSC) or tumor initiating cells (TIC) possessing self-renewal and other stem cell-like properties while differentiated non-stem/initiating cells have a finite life span. To investigate whether the hypothesis is applicable to lung cancer, identification of lung CSC and demonstration of these capacities is essential.
The expression profiles of five stem cell markers (CD34, CD44, CD133, BMI1 and OCT4) were screened by flow cytometry in 10 lung cancer cell lines. CD44 was further investigated by testing for in vitro and in vivo tumorigenecity. Formation of spheroid bodies and in vivo tumor initiation ability were demonstrated in CD44(+) cells of 4 cell lines. Serial in vivo tumor transplantability in nude mice was demonstrated using H1299 cell line. The primary xenografts initiated from CD44(+) cells consisted of mixed CD44(+) and CD44(-) cells in similar ratio as the parental H1299 cell line, supporting in vivo differentiation. Semi-quantitative Real-Time PCR (RT-PCR) showed that both freshly sorted CD44(+) and CD44(+) cells derived from CD44(+)-initiated tumors expressed the pluripotency genes OCT4/POU5F1, NANOG, SOX2. These stemness markers were not expressed by CD44(-) cells. Furthermore, freshly sorted CD44(+) cells were more resistant to cisplatin treatment with lower apoptosis levels than CD44(-) cells. Immunohistochemical analysis of 141 resected non-small cell lung cancers showed tumor cell expression of CD44 in 50.4% of tumors while no CD34, and CD133 expression was observed in tumor cells. CD44 expression was associated with squamous cell carcinoma but unexpectedly, a longer survival was observed in CD44-expressing adenocarcinomas.
Overall, our results demonstrated that stem cell-like properties are enriched in CD44-expressing subpopulations of some lung cancer cell lines. Further investigation is required to clarify the role of CD44 in tumor cell renewal and cancer propagation in the in vivo environment.
Journal Article
Reversal of hyperglycemia in diabetic mouse models using induced-pluripotent stem (iPS)-derived pancreatic β-like cells
2010
Diabetes mellitus is characterized by either the inability to produce insulin (type 1 diabetes) or as insensitivity to insulin secreted by the body (type 2 diabetes). In either case, the body is unable to move blood glucose efficiently across cell membranes to be used. This leads to a variety of local and systemic detrimental effects. Current treatments for diabetes focus on exogenous insulin administration and dietary control. Here, we describe a potential cure for diabetes using a cellular therapy to ameliorate symptoms associated with both reduced insulin secretion and insulin sensitivity. Using induced pluripotent stem (iPS) cells, we were able to derive β-like cells similar to the endogenous insulin-secreting cells in mice. These β-like cells secreted insulin in response to glucose and corrected a hyperglycemic phenotype in two mouse models of type 1 and 2 diabetes via an iPS cell transplant. Long-term correction of hyperglycemia was achieved, as determined by blood glucose and hemoglobin A1c levels. These data provide an initial proof of principle for potential clinical applications of reprogrammed somatic cells in the treatment of diabetes type 1 or 2.
Journal Article
Phenotypic correction of murine hemophilia A using an iPS cell-based therapy
by
Adcock, Dorothy M
,
Ward, David C
,
Fink, Louis M
in
alkaline phosphatase
,
Animals
,
Biological Sciences
2009
Hemophilia A is caused by mutations within the Factor VIII (FVIII) gene that lead to depleted protein production and inefficient blood clotting. Several attempts at gene therapy have failed for various reasons--including immune rejection. The recent generation of induced pluripotent stem (iPS) cells from somatic cells by the ectopic expression of 3 transcription factors, Oct4, Sox2, and Klf4, provides a means of circumventing the immune rejection barrier. To date, iPS cells appear to be indistinguishable from ES cells and thus provide tremendous therapeutic potential. Here we prepared murine iPS cells from tail-tip fibroblasts and differentiated them to both endothelial cells and endothelial progenitor cells by using the embryoid body differentiation method. These iPS cells express major ES cell markers such as Oct4, Nanog, SSEA-1, alkaline phosphatase, and SALL4. Endothelial/endothelial progenitor cells derived from iPS cells expressed cell-specific markers such as CD31, CD34, and Flk1 and secreted FVIII protein. These iPS-derived cells were injected directly into the liver of irradiated hemophilia A mice. At various times after transplantation (7-90 days) hemophilia A mice and their control mice counterparts were challenged by a tail-clip bleeding assay. Nontransplanted hemophilia A mice died within a few hours, whereas transplanted mice survived for more than 3 months. Plasma FVIII levels increased in transplanted hemophilia A mice during this period to 8% to 12% of wild type and corrected the hemophilia A phenotype. Our studies provide additional evidence that iPS cell therapy may be able to treat human monogenetic disorders in the future.
Journal Article
Genome-wide analysis reveals Sall4 to be a major regulator of pluripotency in murine-embryonic stem cells
2008
Embryonic stem cells have potential utility in regenerative medicine because of their pluripotent characteristics. Sall4, a zinc-finger transcription factor, is expressed very early in embryonic development with Oct4 and Nanog, two well-characterized pluripotency regulators. Sall4 plays an important role in governing the fate of stem cells through transcriptional regulation of both Oct4 and Nanog. By using chromatin immunoprecipitation coupled to microarray hybridization (ChIP-on-chip), we have mapped global gene targets of Sall4 to further investigate regulatory processes in W4 mouse ES cells. A total of 3,223 genes were identified that were bound by the Sall4 protein on duplicate assays with high confidence, and many of these have major functions in developmental and regulatory pathways. Sall4 bound approximately twice as many annotated genes within promoter regions as Nanog and approximately four times as many as Oct4. Immunoprecipitation revealed a heteromeric protein complex(es) between Sall4, Oct4, and Nanog, consistent with binding site co-occupancies. Decreasing Sall4 expression in W4 ES cells decreases the expression levels of Oct4, Sox2, c-Myc, and Klf4, four proteins capable of reprogramming somatic cells to an induced pluripotent state. Further, Sall4 bound many genes that are regulated in part by chromatin-based epigenetic events mediated by polycomb-repressive complexes and bivalent domains. This suggests that Sall4 plays a diverse role in regulating stem cell pluripotency during early embryonic development through integration of transcriptional and epigenetic controls.
Journal Article
Pharmacological targeting of the thrombomodulin–activated protein C pathway mitigates radiation toxicity
by
Fernández, Jose Á
,
Fink, Louis M
,
Weiler, Hartmut
in
631/61/490
,
692/698/1543/233
,
692/700/565
2012
Using an unbiased genetic screen in mice, Hartmut Geiger
et al
. found that the thrombomodulin–activated protein C pathway, which controls blood coagulation among other functions, also protects from radiation damage. Administration of a recombinant variant of thrombomodulin or of recombinant activated protein C protected mice from total body irradiation, pointing to potential therapeutic applications.
Tissue damage induced by ionizing radiation in the hematopoietic and gastrointestinal systems is the major cause of lethality in radiological emergency scenarios and underlies some deleterious side effects in patients undergoing radiation therapy
1
,
2
. The identification of target-specific interventions that confer radiomitigating activity is an unmet challenge. Here we identify the thrombomodulin (Thbd)–activated protein C (aPC) pathway as a new mechanism for the mitigation of total body irradiation (TBI)-induced mortality. Although the effects of the endogenous Thbd-aPC pathway were largely confined to the local microenvironment of Thbd-expressing cells, systemic administration of soluble Thbd or aPC could reproduce and augment the radioprotective effect of the endogenous Thbd-aPC pathway. Therapeutic administration of recombinant, soluble Thbd or aPC to lethally irradiated wild-type mice resulted in an accelerated recovery of hematopoietic progenitor activity in bone marrow and a mitigation of lethal TBI. Starting infusion of aPC as late as 24 h after exposure to radiation was sufficient to mitigate radiation-induced mortality in these mice. These findings suggest that pharmacologic augmentation of the activity of the Thbd-aPC pathway by recombinant Thbd or aPC might offer a rational approach to the mitigation of tissue injury and lethality caused by ionizing radiation.
Journal Article
Bmi-1 is a target gene for SALL4 in hematopoietic and leukemic cells
2007
Bmi-1 and SALL4 are putative oncogenes that modulate stem cell pluripotency and play a role in leukemogenesis. Murine Sall4 also has been shown to play an essential role in maintaining the properties of ES cells and governing the fate of the primitive inner cell mass. Here, we demonstrate that transcription from the Bmi-1 promoter is strikingly activated by SALL4 in a dose-dependent manner by using a luciferase reporter gene assay. Both promoter deletion construct studies and ChIP from a myeloid stem cell line, 32D, demonstrate that SALL4 binds to a specific region of the Bmi-1 promoter. Deletion of one copy of Sall4 by gene targeting in mouse bone marrow significantly reduced Bmi-1 expression. Reducing SALL4 expression by siRNA in the HL-60 leukemia cell line also results in significant down-regulation of Bmi-1. Furthermore, Bmi-1 expression is up-regulated in transgenic mice that constitutively overexpress human SALL4, and the levels of Bmi-1 in these mice increase as they progress from normal to preleukemic (myelodysplastic syndrome) and leukemic (acute myeloid leukemia) stages. High levels of H3-K4 trimethylation and H3-K79 dimethylation were observed in the SALL4 binding region of the Bmi-1 promoter. These findings suggest a novel link between SALL4 and Bmi-1 in regulating self-renewal of normal and leukemic stem cells. An increase in histone H3-K4 and H3-K79 methylation within the Bmi-1 promoter provides an epigenetic mechanism for histone modifications in SALL4-mediated Bmi-1 gene deregulation.
Journal Article
Enhanced self-renewal of hematopoietic stem/progenitor cells mediated by the stem cell gene Sall4
2011
Background
Sall4 is a key factor for the maintenance of pluripotency and self-renewal of embryonic stem cells (ESCs). Our previous studies have shown that Sall4 is a robust stimulator for human hematopoietic stem and progenitor cell (HSC/HPC) expansion. The purpose of the current study is to further evaluate how Sall4 may affect HSC/HPC activities in a murine system.
Methods
Lentiviral vectors expressing Sall4A or Sall4B isoform were used to transduce mouse bone marrow Lin-/Sca1+/c-Kit+ (LSK) cells and HSC/HPC self-renewal and differentiation were evaluated.
Results
Forced expression of Sall4 isoforms led to sustained
ex vivo
proliferation of LSK cells. In addition, Sall4 expanded HSC/HPCs exhibited increased
in vivo
repopulating abilities after bone marrow transplantation. These activities were associated with dramatic upregulation of multiple HSC/HPC regulatory genes including HoxB4, Notch1, Bmi1, Runx1, Meis1 and Nf-ya. Consistently, downregulation of endogenous Sall4 expression led to reduced LSK cell proliferation and accelerated cell differentiation. Moreover, in myeloid progenitor cells (32D), overexpression of Sall4 isoforms inhibited granulocytic differentiation and permitted expansion of undifferentiated cells with defined cytokines, consistent with the known functions of Sall4 in the ES cell system.
Conclusion
Sall4 is a potent regulator for HSC/HPC self-renewal, likely by increasing self-renewal activity and inhibiting differentiation. Our work provides further support that Sall4 manipulation may be a new model for expanding clinically transplantable stem cells.
Journal Article
Isolation, characterization, and in vitro propagation of infantile hemangioma stem cells and an in vivo mouse model
2011
Background
Infantile hemangiomas (IH) are the most common benign tumors of infancy. The typical clinical course consists of rapid growth during the first year of life, followed by natural and gradual involution over a multi-year time span through unknown cellular mechanisms. Some tumors respond to medical treatment with corticosteroids or beta-blockers, however, when this therapy fails or is incomplete, surgical extirpation may be necessary. Noninvasive therapies to debulk or eliminate these tumors would be an important advance. The development of an
in vitro
cell culture system and an animal model would allow new insights into the biological processes involved in the development and pathogenesis of IH.
Results
We observed that proliferative stage IH specimens contain significantly more SALL4+ and CD133+ cells than involuting tumors, suggesting a possible stem cell origin. A tumor sphere formation assay was adapted to culture IH cells
in vitro
. Cells in IH tumor spheres express GLUT1, indicative of an IH cell of origin, elevated levels of VEGF, and various stem/progenitor cell markers such as SALL4, KDR, Oct4, Nanog and CD133. These cells were able to self-renew and differentiate to endothelial lineages, both hallmarks of tumor stem cells. Treatment with Rapamycin, a potent mTOR/VEGF inhibitor, dramatically suppressed IH cell growth
in vitro
. Subcutaneous injection of cells from IH tumor spheres into immunodeficient NOD-SCID mice produced GLUT1 and CD31 positive tumors with the same cellular proliferation, differentiation and involution patterns as human hemangiomas.
Conclusions
The ability to propagate large numbers of IH stem cells
in vitro
and the generation of an
in vivo
mouse model provides novel avenues for testing IH therapeutic agents in the future.
Journal Article
Inactivation of Thrombomodulin by Ionizing Radiation in a Cell-Free System: Possible Implications for Radiation Responses in Vascular Endothelium
by
Ross, Christopher C.
,
Hauer-Jensen, Martin
,
Fink, Louis M.
in
Amines
,
Cell-Free System
,
Endothelial cells
2008
Ross, C. C., MacLeod, S. L., Plaxco, J. R., Froude, J. W., Fink, L. M., Wang, J., Stites, W. E. and Hauer-Jensen, M. Inactivation of Thrombomodulin by Ionizing Radiation in a Cell-Free System: Possible Implications for the Radiation Responses in Vascular Endothelium. Radiat. Res. 169, 408–416 (2008). Normal tissue radiation injury is associated with loss of vascular thromboresistance, notably because of deficient levels of endothelial thrombomodulin (TM). TM is located on the luminal surface of most endothelial cells and has critical anticoagulant and anti-inflammatory functions. Chemical oxidation of a specific methionine residue (Met388) at the thrombin-binding site in TM reduces its main functional activity, i.e., the ability to activate protein C. We examined whether exposure to ionizing radiation affects TM in a similar manner. Full-length recombinant human TM, a construct of epidermal growth factor-like domains 4–6, which are involved in protein C activation, and a synthetic peptide containing the methionine of interest were exposed to γ radiation in a cell-free system, i.e., a system not confounded by TM turnover or ectodomain shedding. The influence of radiation on functional activity was assessed with the protein C activation assay; formation of a TM-thrombin complex was assessed with surface plasmon resonance (Biacore), and oxidation of Met388 was assessed by HPLC and confirmed by mass spectroscopy. Exposure to radiation caused a dose-dependent reduction in protein C activation, impaired TM-thrombin complex formation, and oxidation of Met388. These results demonstrate that ionizing radiation adversely affects the TM molecule. Our findings may have relevance to normal tissue toxicity in clinical radiation therapy as well as to the development of radiation syndromes in the non-therapeutic radiation exposure setting.
Journal Article
Pathologists in a Teaching Institution Assess the Value of the Autopsy
2002
Context.—With the advent of modern diagnostic technology, use of the autopsy as a means of assessing diagnostic accuracy has declined precipitously. Interestingly, during the same period, the rate of misdiagnosis found at autopsy has not changed.
Objectives.—To ascertain why an autopsy was requested, whether or not questions asked by clinicians were specifically addressed, and what types of misdiagnoses were found.
Design.—One hundred forty-two consecutive autopsy records from the University of Arkansas for Medical Sciences Hospital were reviewed. In the same period, 715 deaths occurred, giving an overall autopsy rate of 20.14%.
Results.—Of the 125 autopsies in which the problem-oriented autopsy request was available for review, a reason for the autopsy was given in only 69 cases (55%). One hundred three clinical questions were asked, and of these, 81 were specifically addressed in the final anatomic diagnosis, 10 were addressed in some part of the autopsy report but not in the final anatomic diagnosis, 10 were not addressed at all, and 2 could not be answered by the autopsy. Sixty-one autopsies revealed 81 misdiagnoses: 47 class I (missed major diagnosis that, if detected before death, could have led to a change in management that might have resulted in cure or prolonged survival) and 34 class II misdiagnoses (missed major diagnosis in which antemortem detection would have not led to a change in management).
Conclusions.—The autopsy continues to be a vital part of medical education and quality assurance. It is important for the clinician to provide a clinical summary and specific clinical questions to be addressed or to speak directly with the pathologist and for the pathologist to provide answers that are easily accessible within the autopsy report. In this way, a problem-oriented autopsy can be performed based on questions raised by the clinician and the pathologist as a result of the gross dissection and microscopic evaluation.
Journal Article