Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
4
result(s) for
"Finnelli, K."
Sort by:
Measurement of charged hadron multiplicity in Au+Au collisions at $\\sqrt{{\\textrm{s}}_{\\textrm{NN}}}$ = 200 GeV with the sPHENIX detector
by
Bernauer, J. C.
,
Croft, E.
,
Schaefer, B.
in
heavy ion experiments
,
heavy-ion collision
,
quark gluon plasma
2025
The pseudorapidity distribution of charged hadrons produced in Au+Au collisions at a center-of-mass energy of $\\sqrt{{\\textrm{s}}_{\\textrm{NN}}}$ = 200 GeV is measured using data collected by the sPHENIX detector. Charged hadron yields are extracted by counting cluster pairs in the inner and outer layers of the Intermediate Silicon Tracker, with corrections applied for detector acceptance, reconstruction efficiency, combinatorial pairs, and contributions from secondary decays. The measured distributions cover |η| < 1.1 across various centralities, and the average pseudorapidity density of charged hadrons at mid-rapidity is compared to predictions from Monte Carlo heavy-ion event generators. This result, featuring full azimuthal coverage at mid-rapidity, is consistent with previous experimental measurements at the Relativistic Heavy Ion Collider, thereby supporting the broader sPHENIX physics program.
Journal Article
Measurement of charged hadron multiplicity in Au+Au collisions at $$ \\sqrt{{\\textrm{s}}_{\\textrm{NN}}} $$ = 200 GeV with the sPHENIX detector
by
Bernauer, J. C.
,
Croft, E.
,
Bathe, S.
in
Heavy Ion Experiments
,
Heavy-Ion Collision
,
Quark Gluon Plasma
2025
The pseudorapidity distribution of charged hadrons produced in Au+Au collisions at a center-of-mass energy of $$ \\sqrt{{\\textrm{s}}_{\\textrm{NN}}} $$ s NN = 200 GeV is measured using data collected by the sPHENIX detector. Charged hadron yields are extracted by counting cluster pairs in the inner and outer layers of the Intermediate Silicon Tracker, with corrections applied for detector acceptance, reconstruction efficiency, combinatorial pairs, and contributions from secondary decays. The measured distributions cover | η | < 1 . 1 across various centralities, and the average pseudorapidity density of charged hadrons at mid-rapidity is compared to predictions from Monte Carlo heavy-ion event generators. This result, featuring full azimuthal coverage at mid-rapidity, is consistent with previous experimental measurements at the Relativistic Heavy Ion Collider, thereby supporting the broader sPHENIX physics program.
Journal Article
Measurement of charged hadron multiplicity in Au+Au collisions at s NN $$ \\sqrt{{\\textrm{s}}_{\\textrm{NN}}} $$ = 200 GeV with the sPHENIX detector
by
E. W. Cline
,
W. Goodman
,
G. Adawi
in
Heavy Ion Experiments
,
Heavy-Ion Collision
,
Quark Gluon Plasma
2025
Abstract The pseudorapidity distribution of charged hadrons produced in Au+Au collisions at a center-of-mass energy of s NN $$ \\sqrt{{\\textrm{s}}_{\\textrm{NN}}} $$ = 200 GeV is measured using data collected by the sPHENIX detector. Charged hadron yields are extracted by counting cluster pairs in the inner and outer layers of the Intermediate Silicon Tracker, with corrections applied for detector acceptance, reconstruction efficiency, combinatorial pairs, and contributions from secondary decays. The measured distributions cover |η| < 1.1 across various centralities, and the average pseudorapidity density of charged hadrons at mid-rapidity is compared to predictions from Monte Carlo heavy-ion event generators. This result, featuring full azimuthal coverage at mid-rapidity, is consistent with previous experimental measurements at the Relativistic Heavy Ion Collider, thereby supporting the broader sPHENIX physics program.
Journal Article
Gaia: segmented germanium detector for high-energy X-ray fluorescence and spectroscopic imaging
by
Pinaroli, Giovanni
,
Kuczewski, John
,
Caswell, Thomas
in
detectors
,
fluorescence imaging
,
germanium detectors
2026
We present Gaia, a monolithic array of 96 high-purity germanium pixel detectors integrated with a custom low-noise application-specific integrated circuit (ASIC) and a field-programmable gate array (FPGA)-based data acquisition system. The sensor operates at ∼100 K using a commercial closed-cycle cryocooler, with the in-vacuum electronics thermally isolated from the cold finger to ensure thermal stability. The system demonstrates an average energy resolution of 711 eV at 122 keV, measured using a 57 Co source, and 253 eV at 5.89 keV, measured with 55 Fe across all channels. The readout architecture incorporates a high-performance FPGA paired with a dual-core ARM processor, forming a complete embedded Linux-based computing platform. Communication between the processor and FPGA is handled via memory-mapped I/O, and data are streamed over high-speed gigabit Ethernet. A full-scale 384-pixel Gaia detector, based on this 96-element module, is currently under fabrication.
Journal Article