Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
109
result(s) for
"Finocchiaro, Gaetano"
Sort by:
Clonal evolution of glioblastoma under therapy
2016
Raul Rabadan, Antonio Iavarone, Gaetano Finocchiaro, Do-Hyun Nam and colleagues analyze longitudinal genomic and transcriptomic data from 114 patients with glioblastoma. They find that relapse-associated clones typically exist before diagnosis, that expression subtypes are not stable under therapy and that recurrence tumors harbor specific alterations in several genes, including
LTBP4
and
MGMT
.
Glioblastoma (GBM) is the most common and aggressive primary brain tumor. To better understand how GBM evolves, we analyzed longitudinal genomic and transcriptomic data from 114 patients. The analysis shows a highly branched evolutionary pattern in which 63% of patients experience expression-based subtype changes. The branching pattern, together with estimates of evolutionary rate, suggests that relapse-associated clones typically existed years before diagnosis. Fifteen percent of tumors present hypermutation at relapse in highly expressed genes, with a clear mutational signature. We find that 11% of recurrence tumors harbor mutations in
LTBP4
, which encodes a protein binding to TGF-β. Silencing
LTBP4
in GBM cells leads to suppression of TGF-β activity and decreased cell proliferation. In recurrent GBM with wild-type
IDH1
, high
LTBP4
expression is associated with worse prognosis, highlighting the TGF-β pathway as a potential therapeutic target in GBM.
Journal Article
Immunotherapy response assessment in neuro-oncology: a report of the RANO working group
by
Franceschi, Enrico
,
Weller, Michael
,
Pollack, Ian F
in
Algorithms
,
Chemotherapy
,
Cytotoxicity
2015
Immunotherapy is a promising area of therapy in patients with neuro-oncological malignancies. However, early-phase studies show unique challenges associated with the assessment of radiological changes in response to immunotherapy reflecting delayed responses or therapy-induced inflammation. Clinical benefit, including long-term survival and tumour regression, can still occur after initial disease progression or after the appearance of new lesions. Refinement of the response assessment criteria for patients with neuro-oncological malignancies undergoing immunotherapy is therefore warranted. Herein, a multinational and multidisciplinary panel of neuro-oncology immunotherapy experts describe immunotherapy Response Assessment for Neuro-Oncology (iRANO) criteria based on guidance for the determination of tumour progression outlined by the immune-related response criteria and the RANO working group. Among patients who demonstrate imaging findings meeting RANO criteria for progressive disease within 6 months of initiating immunotherapy, including the development of new lesions, confirmation of radiographic progression on follow-up imaging is recommended provided that the patient is not significantly worse clinically. The proposed criteria also include guidelines for the use of corticosteroids. We review the role of advanced imaging techniques and the role of measurement of clinical benefit endpoints including neurological and immunological functions. The iRANO guidelines put forth in this Review will evolve successively to improve their usefulness as further experience from immunotherapy trials in neuro-oncology accumulate.
Journal Article
The integrated landscape of driver genomic alterations in glioblastoma
by
Canoll, Peter
,
Yan, Hai
,
Lasorella, Anna
in
631/208/726/649/2157
,
631/208/737
,
692/420/2489/144/68
2013
Anna Lasorella, Raul Rabadan, Antonio Iavarone and colleagues report an integrated analysis of genomic alterations in glioblastoma. They identify and functionally validate several new driver events, including loss-of-function mutations in
CTNND2
and recurrent
EGFR
fusions.
Glioblastoma is one of the most challenging forms of cancer to treat. Here we describe a computational platform that integrates the analysis of copy number variations and somatic mutations and unravels the landscape of in-frame gene fusions in glioblastoma. We found mutations with loss of heterozygosity in
LZTR1
, encoding an adaptor of CUL3-containing E3 ligase complexes. Mutations and deletions disrupt
LZTR1
function, which restrains the self renewal and growth of glioma spheres that retain stem cell features. Loss-of-function mutations in
CTNND2
target a neural-specific gene and are associated with the transformation of glioma cells along the very aggressive mesenchymal phenotype. We also report recurrent translocations that fuse the coding sequence of
EGFR
to several partners, with
EGFR-SEPT14
being the most frequent functional gene fusion in human glioblastoma.
EGFR-SEPT14
fusions activate STAT3 signaling and confer mitogen independence and sensitivity to EGFR inhibition. These results provide insights into the pathogenesis of glioblastoma and highlight new targets for therapeutic intervention.
Journal Article
MRI in Glioma Immunotherapy: Evidence, Pitfalls, and Perspectives
by
Aquino, Domenico
,
Gioppo, Andrea
,
Bruzzone, Maria Grazia
in
Antigens
,
Blood
,
Blood-brain barrier
2017
Pseudophenomena, that is, imaging alterations due to therapy rather than tumor evolution, have an important impact on the management of glioma patients and the results of clinical trials. RANO (response assessment in neurooncology) criteria, including conventional MRI (cMRI), addressed the issues of pseudoprogression after radiotherapy and concomitant chemotherapy and pseudoresponse during antiangiogenic therapy of glioblastomas (GBM) and other gliomas. The development of cancer immunotherapy forced the identification of further relevant response criteria, summarized by the iRANO working group in 2015. In spite of this, the unequivocal definition of glioma progression by cMRI remains difficult particularly in the setting of immunotherapy approaches provided by checkpoint inhibitors and dendritic cells. Advanced MRI (aMRI) may in principle address this unmet clinical need. Here, we discuss the potential contribution of different aMRI techniques and their indications and pitfalls in relation to biological and imaging features of glioma and immune system interactions.
Journal Article
A regulatory circuit of miR-125b/miR-20b and Wnt signalling controls glioblastoma phenotypes through FZD6-modulated pathways
2016
Molecularly defined subclassification is associated with phenotypic malignancy of glioblastoma (GBM). However, current understanding of the molecular basis of subclass conversion that is often involved in GBM recurrence remain rudimentary at best. Here we report that canonical Wnt signalling that is active in proneural (PN) but inactive in mesenchymal (MES) GBM, along with miR-125b and miR-20b that are expressed at high levels in PN compared with MES GBM, comprise a regulatory circuit involving TCF4-miR-125b/miR-20b-FZD6. FZD6 acts as a negative regulator of this circuit by activating CaMKII–TAK1–NLK signalling, which, in turn, attenuates Wnt pathway activity while promoting STAT3 and NF-κB signalling that are important regulators of the MES-associated phenotype. These findings are confirmed by targeting differentially enriched pathways in PN versus MES GBM that results in inhibition of distinct GBM subtypes. Correlative expressions of the components of this circuit are prognostic relevant for clinical GBM. Our findings provide insights for understanding GBM pathogenesis and for improving treatment of GBM.
Glioblastoma (GBM) is classified as proneural (PN), neural, mesenchymal (MES) and classical GBM. Here the authors show that Wnt signalling, miR-125b and miR-20b establish a regulatory circuitry including FZD6 which distinguishes PN from the MES subtype.
Journal Article
A Radial Glia Gene Marker, Fatty Acid Binding Protein 7 (FABP7), Is Involved in Proliferation and Invasion of Glioblastoma Cells
by
Mori, Elisa
,
De Rosa, Antonella
,
Miragliotta, Vincenzo
in
5' Flanking Region
,
Adherent cells
,
Anilides - pharmacology
2012
Glioblastoma multiforme (GBM) is among the most deadly cancers. A number of studies suggest that a fraction of tumor cells with stem cell features (Glioma Stem-like Cells, GSC) might be responsible for GBM recurrence and aggressiveness. GSC similarly to normal neural stem cells, can form neurospheres (NS) in vitro, and seem to mirror the genetic features of the original tumor better than glioma cells growing adherently in the presence of serum. Using cDNA microarray analysis we identified a number of relevant genes for glioma biology that are differentially expressed in adherent cells and neurospheres derived from the same tumor. Fatty acid-binding protein 7 (FABP7) was identified as one of the most highly expressed genes in NS compared to their adherent counterpart. We found that down-regulation of FABP7 expression in NS by small interfering RNAs significantly reduced cell proliferation and migration. We also evaluated the potential involvement of FABP7 in response to radiotherapy, as this treatment may cause increased tumor infiltration. Migration of irradiated NS was associated to increased expression of FABP7. In agreement with this, in vivo reduced tumorigenicity of GBM cells with down-regulated expression of FABP7 was associated to decreased expression of the migration marker doublecortin. Notably, we observed that PPAR antagonists affect FABP7 expression and decrease the migration capability of NS after irradiation. As a whole, the data emphasize the role of FABP7 expression in GBM migration and provide translational hints on the timing of treatment with anti-FABP7 agents like PPAR antagonists during GBM evolution.
Journal Article
MET inhibition overcomes radiation resistance of glioblastoma stem‐like cells
2016
Glioblastoma (GBM) contains stem‐like cells (GSCs) known to be resistant to ionizing radiation and thus responsible for therapeutic failure and rapidly lethal tumor recurrence. It is known that GSC radioresistance relies on efficient activation of the DNA damage response, but the mechanisms linking this response with the stem status are still unclear. Here, we show that the MET receptor kinase, a functional marker of GSCs, is specifically expressed in a subset of radioresistant GSCs and overexpressed in human GBM recurring after radiotherapy. We elucidate that MET promotes GSC radioresistance through a novel mechanism, relying on AKT activity and leading to (i) sustained activation of Aurora kinase A, ATM kinase, and the downstream effectors of DNA repair, and (ii) phosphorylation and cytoplasmic retention of p21, which is associated with anti‐apoptotic functions. We show that MET pharmacological inhibition causes DNA damage accumulation in irradiated GSCs and their depletion
in vitro
and in GBMs generated by GSC xenotransplantation. Preclinical evidence is thus provided that MET inhibitors can radiosensitize tumors and convert GSC‐positive selection, induced by radiotherapy, into GSC eradication.
Synopsis
GBM radioresistance relies on the inherent properties of its stem‐like cell population (GSCs). MET, which encodes for the HGF receptor, is shown to be a functional marker of GSC radioresistance and a therapeutic target for GSC radiosensitization.
MET expression identifies radioresistant GSCs derived from a subset of patients and propagated as neurospheres.
In GBMs recurring after radiotherapy, MET expression is more frequent, as compared with matched primary tumors (85% versus 45%).
MET drives positive selection of irradiated GSCs, by promoting the DNA damage response via AKT, which sustains ATM activation, and p21 phosphorylation and cytoplasmic retention.
When combined with radiotherapy, MET inhibition impairs the GSC DNA damage response and converts GSC selection from positive to negative.
Graphical Abstract
GBM radioresistance relies on the inherent properties of its stem‐like cell population (GSCs). MET, which encodes for the HGF receptor, is shown to be a functional marker of GSC radioresistance and a therapeutic target for GSC radiosensitization.
Journal Article
Targeting Post-Translational Modifications to Improve Combinatorial Therapies in Breast Cancer: The Role of Fucosylation
by
Curigliano, Giuseppe
,
Porta, Francesca Maria
,
Antonarelli, Gabriele
in
Angiogenesis
,
Biomarkers
,
Breast cancer
2023
Various tumors rely on post-translational modifications (PTMs) to promote invasiveness and angiogenesis and to reprogram cellular energetics to abate anti-cancer immunity. Among PTMs, fucosylation is a particular type of glycosylation that has been linked to different aspects of immune and hormonal physiological functions as well as hijacked by many types of tumors. Multiple tumors, including breast cancer, have been linked to dismal prognoses and increased metastatic potential due to fucosylation of the glycan core, namely core-fucosylation. Pre-clinical studies have examined the molecular mechanisms regulating core-fucosylation in breast cancer models, its negative prognostic value across multiple disease stages, and the activity of in vivo pharmacological inhibition, instructing combinatorial therapies and translation into clinical practice. Throughout this review, we describe the role of fucosylation in solid tumors, with a particular focus on breast cancer, as well as physiologic conditions on the immune system and hormones, providing a view into its potential as a biomarker for predicating or predicting cancer outcomes, as well as a potential clinical actionability as a biomarker.
Journal Article
Radiosurgery reirradiation for high-grade glioma recurrence: a retrospective analysis
2015
Despite various treatment strategies being available, recurrent high-grade gliomas (r-HGG) are difficult to manage. To obtain local control, radiosurgery (SRS) reirradiation has been considered as potential treatment. In the present study, a retrospective analysis was performed on r-HGG patients treated with salvage single- (s-SRS) or multi-fraction SRS (m-SRS). The aim of this study was to evaluate the effectiveness of salvage SRS in terms of overall survival (OS); toxicity was analyzed as well. Between 2004 May and 2011 December, 128 r-HGG patients (161 lesions) treated with CyberKnife
®
SRS reirradiation were retrospectively analyzed. Toxicity was graded according to Radiation Therapy Oncology Group and by Common Terminology Criteria for Adverse Events v.3 criteria. OS from the diagnosis date and OS from reirradiation were estimated using the Kaplan–Meier method. Median follow-up was 9 months (range 15 days–82 months). All patients completed SRS without high-grade toxicity. Radiation necrosis was observed in seven patients (6 %) with large volume lesions. The median survival from initial diagnosis was 32 months. The 1-, 2-, and 3-years survival rates from diagnosis were 95, 62, and 45 % respectively. Median survival following SRS was 11.5 months. The 1-, 2-, and 3-years survival rate following SRS was 48, 20, and 17 % respectively. On multivariate analysis, age <40 years, salvage surgery before SRS, and other post-SRS therapies (second-line chemotherapy and/or surgery) were found to significantly improve survival (
p
= 0.03). SRS represents a safe and feasible option to treat r-HGG patients with low complication rates and potential survival benefit.
Journal Article