Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
119 result(s) for "Fishbein, Mark"
Sort by:
Navigating the tip of the genomic iceberg: Next-generation sequencing for plant systematics
Premise of the study: Just as Sanger sequencing did more than 20 years ago, next-generation sequencing (NGS) is poised to revolutionize plant systematics. By combining multiplexing approaches with NGS throughput, systematists may no longer need to choose between more taxa or more characters. Here we describe a genome skimming (shallow sequencing) approach for plant systematics. Methods: Through simulations, we evaluated optimal sequencing depth and performance of single-end and paired-end short read sequences for assembly of nuclear ribosomal DNA (rDNA) and plastomes and addressed the effect of divergence on reference-guided plastome assembly. We also used simulations to identify potential phylogenetic markers from low-copy nuclear loci at different sequencing depths. We demonstrated the utility of genome skimming through phylogenetic analysis of the Sonoran Desert clade (SDC) of Asclepias (Apocynaceae). Key results: Paired-end reads performed better than single-end reads. Minimum sequencing depths for high quality rDNA and plastome assemblies were 40x and 30x, respectively. Divergence from the reference significantly affected plastome assembly, but relatively similar references are available for most seed plants. Deeper rDNA sequencing is necessary to characterize intragenomic polymorphism. The low-copy fraction of the nuclear genome was readily surveyed, even at low sequencing depths. Nearly 160000 bp of sequence from three organelles provided evidence of phylogenetic incongruence in the SDC. Conclusions: Adoption of NGS will facilitate progress in plant systematics, as whole plastome and rDNA cistrons, partial mitochondrial genomes, and low-copy nuclear markers can now be efficiently obtained for molecular phylogenetics studies.
Phylogenetic escalation and decline of plant defense strategies
As the basal resource in most food webs, plants have evolved myriad strategies to battle consumption by herbivores. Over the past 50 years, plant defense theories have been formulated to explain the remarkable variation in abundance, distribution, and diversity of secondary chemistry and other defensive traits. For example, classic theories of enemy-driven evolutionary dynamics have hypothesized that defensive traits escalate through the diversification process. Despite the fact that macroevolutionary patterns are an explicit part of defense theories, phylogenetic analyses have not been previously attempted to disentangle specific predictions concerning (i) investment in resistance traits, (ii) recovery after damage, and (iii) plant growth rate. We constructed a molecular phylogeny of 38 species of milkweed and tested four major predictions of defense theory using maximum-likelihood methods. We did not find support for the growth-rate hypothesis. Our key finding was a pattern of phyletic decline in the three most potent resistance traits (cardenolides, latex, and trichomes) and an escalation of regrowth ability. Our neontological approach complements more common paleontological approaches to discover directional trends in the evolution of life and points to the importance of natural enemies in the macroevolution of species. The finding of macroevolutionary escalating regowth ability and declining resistance provides a window into the ongoing coevolutionary dynamics between plants and herbivores and suggests a revision of classic plant defense theory. Where plants are primarily consumed by specialist herbivores, regrowth (or tolerance) may be favored over resistance traits during the diversification process.
Evolution on the backbone
Premise of the Study We provide the largest phylogenetic analyses to date of Apocynaceae in terms of taxa and molecular data as a framework for analyzing the evolution of vegetative and reproductive traits. Methods We produced maximum‐likelihood phylogenies of Apocynaceae using 21 plastid loci sampled from 1045 species (nearly 25% of the family) and complete plastomes from 73 species. We reconstructed ancestral states and used model comparisons in a likelihood framework to analyze character evolution across Apocynaceae. Key Results We obtained a well‐supported phylogeny of Apocynaceae, resolving poorly understood tribal and subtribal relationships (e.g., among Amsonieae and Hunterieae, within Asclepiadeae), rejecting monophyly of Melodineae and Odontadenieae, and placing previously unsampled and enigmatic taxa (e.g., Pycnobotrya). We provide new insights into the evolution of Apocynaceae, including frequent shifts between herbaceousness and woodiness, reversibility of twining, integrated evolution of the corolla and gynostegium, and ancestral baccate fruits. Conclusions Increased sampling and selection of best‐fitting models of evolution provide more resolved and robust estimates of phylogeny and character evolution than obtained in previous studies. Evolutionary inferences are sensitive to choice of phylogenetic frameworks and models.
Hyb-Seq: Combining Target Enrichment and Genome Skimming for Plant Phylogenomics
Premise of the study: Hyb-Seq, the combination of target enrichment and genome skimming, allows simultaneous data collection for low-copy nuclear genes and high-copy genomic targets for plant systematics and evolution studies. Methods and Results: Genome and transcriptome assemblies for milkweed (Asclepias syriaca) were used to design enrichment probes for 3385 exons from 768 genes (>1.6 Mbp) followed by Illumina sequencing of enriched libraries. Hyb-Seq of 12 individuals (10 Asclepias species and two related genera) resulted in at least partial assembly of 92.6% of exons and 99.7% of genes and an average assembly length >2 Mbp. Importantly, complete plastomes and nuclear ribosomal DNA cistrons were assembled using off-target reads. Phylogenomic analyses demonstrated signal conflict between genomes. Conclusions: The Hyb-Seq approach enables targeted sequencing of thousands of low-copy nuclear exons and flanking regions, as well as genome skimming of high-copy repeats and organellar genomes, to efficiently produce genome-scale data sets for phylogenomics.
Evidence for Adaptive Radiation from a Phylogenetic Study of Plant Defenses
One signature of adaptive radiation is a high level of trait change early during the diversification process and a plateau toward the end of the radiation. Although the study of the tempo of evolution has historically been the domain of paleontologists, recently developed phylogenetic tools allow for the rigorous examination of trait evolution in a tremendous diversity of organisms. Enemy-driven adaptive radiation was a key prediction of Ehrlich and Raven's coevolutionary hypothesis [Ehrlich PR, Raven PH (1964) Evolution 18:586-608], yet has remained largely untested. Here we examine patterns of trait evolution in 51 North American milkweed species (Asclepias), using maximum likelihood methods. We study 7 traits of the milkweeds, ranging from seed size and foliar physiological traits to defense traits (cardenolides, latex, and trichomes) previously shown to impact herbivores, including the monarch butterfly. We compare the fit of simple random-walk models of trait evolution to models that incorporate stabilizing selection (Ornstein-Ulenbeck process), as well as time-varying rates of trait evolution. Early bursts of trait evolution were implicated for 2 traits, while stabilizing selection was implicated for several others. We further modeled the relationship between trait change and species diversification while allowing rates of trait evolution to vary during the radiation. Species-rich lineages underwent a proportionately greater decline in latex and cardenolides relative to species-poor lineages, and the rate of trait change was most rapid early in the radiation. An interpretation of this result is that reduced investment in defensive traits accelerated diversification, and disproportionately so, early in the adaptive radiation of milkweeds.
Evolution at the tips
Premise of the Study Leaf surface traits, such as trichome density and wax production, mediate important ecological processes such as anti‐herbivory defense and water‐use efficiency. We present a phylogenetic analysis of Asclepias plastomes as a framework for analyzing the evolution of trichome density and presence of epicuticular waxes. Methods We produced a maximum‐likelihood phylogeny using plastomes of 103 species of Asclepias. We reconstructed ancestral states and used model comparisons in a likelihood framework to analyze character evolution across Asclepias. Key Results We resolved the backbone of Asclepias, placing the Sonoran Desert clade and Incarnatae clade as successive sisters to the remaining species. We present novel findings about leaf surface evolution of Asclepias—the ancestor is reconstructed as waxless and sparsely hairy, a macroevolutionary optimal trichome density is supported, and the rate of evolution of trichome density has accelerated. Conclusions Increased sampling and selection of best‐fitting models of evolution provide more resolved and robust estimates of phylogeny and character evolution than obtained in previous studies. Evolutionary inferences are more sensitive to character coding than model selection.
Building a model: developing genomic resources for common milkweed (Asclepias syriaca) with low coverage genome sequencing
Background Milkweeds ( Asclepias L.) have been extensively investigated in diverse areas of evolutionary biology and ecology; however, there are few genetic resources available to facilitate and compliment these studies. This study explored how low coverage genome sequencing of the common milkweed ( Asclepias syriaca L.) could be useful in characterizing the genome of a plant without prior genomic information and for development of genomic resources as a step toward further developing A. syriaca as a model in ecology and evolution. Results A 0.5× genome of A. syriaca was produced using Illumina sequencing. A virtually complete chloroplast genome of 158,598 bp was assembled, revealing few repeats and loss of three genes: accD, clpP , and ycf1 . A nearly complete rDNA cistron (18S-5.8S-26S; 7,541 bp) and 5S rDNA (120 bp) sequence were obtained. Assessment of polymorphism revealed that the rDNA cistron and 5S rDNA had 0.3% and 26.7% polymorphic sites, respectively. A partial mitochondrial genome sequence (130,764 bp), with identical gene content to tobacco, was also assembled. An initial characterization of repeat content indicated that Ty1/ copia -like retroelements are the most common repeat type in the milkweed genome. At least one A. syriaca microread hit 88% of Catharanthus roseus (Apocynaceae) unigenes (median coverage of 0.29×) and 66% of single copy orthologs (COSII) in asterids (median coverage of 0.14×). From this partial characterization of the A. syriaca genome, markers for population genetics (microsatellites) and phylogenetics (low-copy nuclear genes) studies were developed. Conclusions The results highlight the promise of next generation sequencing for development of genomic resources for any organism. Low coverage genome sequencing allows characterization of the high copy fraction of the genome and exploration of the low copy fraction of the genome, which facilitate the development of molecular tools for further study of a target species and its relatives. This study represents a first step in the development of a community resource for further study of plant-insect co-evolution, anti-herbivore defense, floral developmental genetics, reproductive biology, chemical evolution, population genetics, and comparative genomics using milkweeds, and A. syriaca in particular, as ecological and evolutionary models.
Phylogenetic ecology of leaf surface traits in the milkweeds (Asclepias spp.): chemistry, ecophysiology, and insect behavior
The leaf surface is the contact point between plants and the environment and plays a crucial role in mediating biotic and abiotic interactions. Here, we took a phylogenetic approach to investigate the function, trade-offs, and evolution of leaf surface traits in the milkweeds (Asclepias). Across 47 species, we found trichome densities of up to 3000 trichomes cm⁻² and epicuticular wax crystals (glaucousness) on 10 species. Glaucous species had a characteristic wax composition dominated by very-long-chain aldehydes. The ancestor of the milkweeds was probably a glaucous species, from which there have been several independent origins of glabrous and pubescent types. Trichomes and wax crystals showed negatively correlated evolution, with both surface types showing an affinity for arid habitats. Pubescent and glaucous milkweeds had a higher maximum photosynthetic rate and lower stomatal density than glabrous species. Pubescent and glaucous leaf surfaces impeded settling behavior of monarch caterpillars and aphids compared with glabrous species, although surface types did not show consistent differentiation in secondary chemistry. We hypothesize that pubescence and glaucousness have evolved as alternative mechanisms with similar functions. The glaucous type, however, appears to be ancestral, lost repeatedly, and never regained; we propose that trichomes are a more evolutionarily titratable strategy.
Quantitative MRI for hepatic fat fraction and T2 measurement in pediatric patients with non-alcoholic fatty liver disease
Background Non-alcoholic fatty liver disease (NAFLD) is the most common cause of chronic liver disease in children. The gold standard for diagnosis is liver biopsy. MRI is a non-invasive imaging method to provide quantitative measurement of hepatic fat content. The methodology is particularly appealing for the pediatric population because of its rapidity and radiation-free imaging techniques. Objective To develop a multi-point Dixon MRI method with multi-interference models (multi-fat-peak modeling and bi-exponential T2* correction) for accurate hepatic fat fraction (FF) and T2* measurements in pediatric patients with NAFLD. Materials and methods A phantom study was first performed to validate the accuracy of the MRI fat fraction measurement by comparing it with the chemical fat composition of the ex-vivo pork liver-fat homogenate. The most accurate model determined from the phantom study was used for fat fraction and T2* measurements in 52 children and young adults referred from the pediatric hepatology clinic with suspected or identified NAFLD. Separate T2* values of water (T2* W ) and fat (T2* F ) components derived from the bi-exponential fitting were evaluated and plotted as a function of fat fraction. In ten patients undergoing liver biopsy, we compared histological analysis of liver fat fraction with MRI fat fraction. Results In the phantom study the 6-point Dixon with 5-fat-peak, bi-exponential T2* modeling demonstrated the best precision and accuracy in fat fraction measurements compared with other methods. This model was further calibrated with chemical fat fraction and applied in patients, where similar patterns were observed as in the phantom study that conventional 2-point and 3-point Dixon methods underestimated fat fraction compared to the calibrated 6-point 5-fat-peak bi-exponential model ( P  < 0.0001). With increasing fat fraction, T2* W (27.9 ± 3.5 ms) decreased, whereas T2* F (20.3 ± 5.5 ms) increased; and T2* W and T2* F became increasingly more similar when fat fraction was higher than 15–20%. Histological fat fraction measurements in ten patients were highly correlated with calibrated MRI fat fraction measurements (Pearson correlation coefficient r  = 0.90 with P  = 0.0004). Conclusion Liver MRI using multi-point Dixon with multi-fat-peak and bi-exponential T2* modeling provided accurate fat quantification in children and young adults with non-alcoholic fatty liver disease and may be used to screen at-risk or affected individuals and to monitor disease progress noninvasively.
Different rates of defense evolution and niche preferences in clonal and nonclonal milkweeds (Asclepias spp.)
Given the dual role of many plant traits to tolerate both herbivore attack and abiotic stress, the climatic niche of a species should be integrated into the study of plant defense strategies. Here we investigate the impact of plant reproductive strategy and components of species' climatic niche on the rate of chemical defense evolution in the milkweeds using a common garden experiment of 49 species. We found that across Asclepias species, clonal reproduction repeatedly evolved in lower temperature conditions, in species generally producing low concentrations of a toxic defense (cardenolides). Additionally, we found that rates of cardenolide evolution were lower for clonal than for nonclonal species. We thus conclude that because the clonal strategy is based on survival, long generation times, and is associated with tolerance of herbivory, it may be an alternative to toxicity in colder ecosystems. Taken together, these results indicate that the rate of chemical defense evolution is influenced by the intersection of life‐history strategy and climatic niches into which plants radiate.