Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
1 result(s) for "Flack, Addison H."
Sort by:
Lidar-Based Detection and Analysis of Serendipitous Collisions in Shared Indoor Spaces
Indoor environments significantly influence human interaction, collaboration, and well-being, yet evaluating how architectural designs actually perform in fostering social connections remains challenging. This study demonstrates the use of 11 static-mounted lidar sensors to detect serendipitous encounters—collisions—between people in a shared common space of a mixed academic–residential university building. A novel collision detection algorithm achieved 86.1% precision and detected 14,022 interactions over 115 days (67 million person-seconds) of an academic semester. While occupancy strongly predicted collision frequency overall (R2 ≥ 0.74), significant spatiotemporal variations revealed the complex relationship between co-presence and social interaction. Key findings include the following: (1) collision frequency peaked early in the semester then declined by ~25% by mid-semester; (2) temporal lags between occupancy and collision peaks of 2–3 h in the afternoon indicate that social interaction differs from physical presence; (3) collisions per occupancy peaked on the weekend, with Saturday showing 52% higher rates than the weekly average; and (4) collisions clustered at key transition zones (elevator areas, stair bases), with an additional “friction effect”, where proximity to seating increased interaction rates (>30%) compared to open corridors. This methodology establishes a scalable framework for post-occupancy evaluation, enabling evidence-based assessment of design effectiveness in fostering the spontaneous interactions essential for creativity, innovation, and place-making in built environments.