Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
52 result(s) for "Flaig, Thomas W"
Sort by:
Apalutamide plus abiraterone acetate and prednisone versus placebo plus abiraterone and prednisone in metastatic, castration-resistant prostate cancer (ACIS): a randomised, placebo-controlled, double-blind, multinational, phase 3 study
The majority of patients with metastatic castration-resistant prostate cancer (mCRPC) will have disease progression of a uniformly fatal disease. mCRPC is driven by both activated androgen receptors and elevated intratumoural androgens; however, the current standard of care is therapy that targets a single androgen signalling mechanism. We aimed to investigate the combination treatment using apalutamide plus abiraterone acetate, each of which suppresses the androgen signalling axis in a different way, versus standard care in mCRPC. ACIS was a randomised, placebo-controlled, double-blind, phase 3 study done at 167 hospitals in 17 countries in the USA, Canada, Mexico, Europe, the Asia-Pacific region, Africa, and South America. We included chemotherapy-naive men (aged ≥18 years) with mCRPC who had not been previously treated with androgen biosynthesis signalling inhibitors and were receiving ongoing androgen deprivation therapy, with an Eastern Cooperative Oncology Group (ECOG) performance status of 0 or 1, and a Brief Pain Inventory-Short Form question 3 (ie, worst pain in the past 24 h) score of 3 or lower. Patients were randomly assigned (1:1) via a centralised interactive web response system with a permuted block randomisation scheme (block size 4) to oral apalutamide 240 mg once daily plus oral abiraterone acetate 1000 mg once daily and oral prednisone 5 mg twice daily (apalutamide plus abiraterone–prednisone group) or placebo plus abiraterone acetate and prednisone (abiraterone–prednisone group), in 28-day treatment cycles. Randomisation was stratified by presence or absence of visceral metastases, ECOG performance status, and geographical region. Patients, the investigators, study team, and the sponsor were masked to group assignments. An independent data-monitoring committee continually monitored data to ensure ongoing patient safety, and reviewed efficacy data. The primary endpoint was radiographic progression-free survival assessed in the intention-to-treat population. Safety was reported for all patients who received at least one dose of study drug. This study is completed and no longer recruiting and is registered with ClinicalTrials.gov, number NCT02257736. 982 men were enrolled and randomly assigned from Dec 10, 2014 to Aug 30, 2016 (492 to apalutamide plus abiraterone–prednisone; 490 to abiraterone–prednisone). At the primary analysis (median follow-up 25·7 months [IQR 23·0–28·9]), median radiographic progression-free survival was 22·6 months (95% CI 19·4–27·4) in the apalutamide plus abiraterone–prednisone group versus 16·6 months (13·9–19·3) in the abiraterone–prednisone group (hazard ratio [HR] 0·69, 95% CI 0·58–0·83; p<0·0001). At the updated analysis (final analysis for overall survival; median follow-up 54·8 months [IQR 51·5–58·4]), median radiographic progression-free survival was 24·0 months (95% CI 19·7–27·5) versus 16·6 months (13·9–19·3; HR 0·70, 95% CI 0·60–0·83; p<0·0001). The most common grade 3–4 treatment-emergent adverse event was hypertension (82 [17%] of 490 patients receiving apalutamide plus abiraterone–prednisone and 49 [10%] of 489 receiving abiraterone–prednisone). Serious treatment-emergent adverse events occurred in 195 (40%) patients receiving apalutamide plus abiraterone–prednisone and 181 (37%) patients receiving abiraterone–prednisone. Drug-related treatment-emergent adverse events with fatal outcomes occurred in three (1%) patients in the apalutamide plus abiraterone–prednisone group (2 pulmonary embolism, 1 cardiac failure) and five (1%) patients in the abiraterone–prednisone group (1 cardiac failure and 1 cardiac arrest, 1 mesenteric arterial occlusion, 1 seizure, and 1 sudden death). Despite the use of an active and established therapy as the comparator, apalutamide plus abiraterone–prednisone improved radiographic progression-free survival. Additional studies to identify subgroups of patients who might benefit the most from combination therapy are needed to further refine the treatment of mCRPC. Janssen Research & Development.
Genomic heterogeneity in bladder cancer: challenges and possible solutions to improve outcomes
Histological and molecular analyses of urothelial carcinoma often reveal intratumoural and intertumoural heterogeneity at the genomic, transcriptional and cellular levels. Despite the clonal initiation of the tumour, progression and metastasis often arise from subclones that can develop naturally or during therapy, resulting in molecular alterations with a heterogeneous distribution. Variant histologies in tumour tissues that have developed distinct morphological characteristics divergent from urothelial carcinoma are extreme examples of tumour heterogeneity. Ultimately, heterogeneity contributes to drug resistance and relapse after therapy, resulting in poor survival outcomes. Mutation profile differences between patients with muscle-invasive and metastatic urothelial cancer (interpatient heterogeneity) probably contribute to variability in response to chemotherapy and immunotherapy as first-line treatments. Heterogeneity can occur on multiple levels and averaging or normalizing these alterations is crucial for clinical trial and drug design to enable appropriate therapeutic targeting. Identification of the extent of heterogeneity might shape the choice of monotherapy or additional combination treatments to target different drivers and genetic events. Identification of the lethal tumour cell clones is required to improve survival of patients with urothelial carcinoma.In this Review, Meeks et al. summarize heterogeneity in bladder cancer and how it affects tumour biology and clinical care. They describe current knowledge of tumour evolution, genomic heterogeneity and different tumour subtypes, as well as morphological heterogeneity seen in variant bladder cancer histology. They also discuss the influence of heterogeneity on treatment decision making, drug development and clinical trial design.
235 Root cause analysis of barriers and facilitators to accrual to a pragmatic, EHR-embedded clinical trial
Objectives/Goals: Electronic health record (EHR)-based recruitment can facilitate participation in clinical trials, but is not a panacea to trial accrual challenges. We conducted a root cause analysis to identify EHR-based accrual barriers and facilitators in a pragmatic randomized trial of metformin for those with prostate cancer and glucose intolerance. Methods/Study Population: We quantitatively analyzed enrollment drop-offs among eligible patients who either did not complete a consent (with analysis of EHR-embedded consent process) or who completed a consent but were not enrolled (with analysis of EHR implementation of a Best Practice Alert). We summarized data from the EHR by eligibility, provider encounters, and alerts, and generated CONSORT diagrams and tables to trace the enrollment pathway. We supplemented quantitative findings with a thematic analysis of semi-structured individual interviews with eligible patients (n = 10) and study providers (n = 4) to identify systematic barriers to recruitment and enrollment of eligible patients. Results/Anticipated Results: CONSORT diagram analysis found that 24% of potentially eligible patients (268 of 1130) had an eligible study encounter but were not enrolled. Additionally, BPAs were not triggering for some eligible patients. Interviews revealed that study providers wanted more detailed information about which study arm their patient would be assigned to, and about next steps after enrollment, especially relating to additional lab tests and follow-up care needed. Patient interviews suggested that patients often did not remember completing the consent process and felt overwhelmed with appointments and information; patients expected providers to actively bring up research opportunities during appointments. Discussion/Significance of Impact: While pragmatic EHR-embedded trials are often characterized as lower-burden, these trials still require active engagement by providers, as well as ongoing attention from both research and informatics teams to ensure that EHR-embedded processes are functioning as designed, and that they are effective in recruiting study participants.
Predicting response to neoadjuvant chemotherapy in muscle-invasive bladder cancer via interpretable multimodal deep learning
Building accurate prediction models and identifying predictive biomarkers for treatment response in Muscle-Invasive Bladder Cancer (MIBC) are essential for improving patient survival but remain challenging due to tumor heterogeneity, despite numerous related studies. To address this unmet need, we developed an interpretable Graph-based Multimodal Late Fusion (GMLF) deep learning framework. Integrating histopathology and cell type data from standard H&E images with gene expression profiles derived from RNA sequencing from the SWOG S1314-COXEN clinical trial (ClinicalTrials.gov NCT02177695 2014-06-25), GMLF uncovered new histopathological, cellular, and molecular determinants of response to neoadjuvant chemotherapy. Specifically, we identified key gene signatures that drive the predictive power of our model, including alterations in TP63, CCL5, and DCN. Our discovery can optimize treatment strategies for patients with MIBC, e.g., improving clinical outcomes, avoiding unnecessary treatment, and ultimately, bladder preservation. Additionally, our approach could be used to uncover predictors for other cancers.
Simultaneous Activation of Kras and Inactivation of p53 Induces Soft Tissue Sarcoma and Bladder Urothelial Hyperplasia
The development of the Cre recombinase-controlled (Cre/LoxP) technique allows the manipulation of specific tumorigenic genes, temporarily and spatially. Our original intention of this study was to investigate the role of Kras and p53 in the development of urinary bladder cancer. First, to validate the effect of intravesical delivery on Cre recombination (Adeno-Cre), we examined activity and expression of β-galactosidase in the bladder of control ROSA transgenic mice. The results confirmed specific recombination as evidenced by β-galactosidase activity in the bladder urothelium of these mice. Then, we administered the same adenovirus into the bladder of double transgenic Kras(LSLG12D/+). p53(fl/fl) mice. The virus solution was held in place by a distal urethral retention suture for 2 hours. To our surprise, there was a rapid development of a spindle-cell tumor with sarcoma characteristics near the suture site, within the pelvic area but outside the urinary track. Since we did not see any detectable β-galactosidase in the area outside of the bladder in the validating (control) experiment, we interpreted that this sarcoma formation was likely due to transduction by Adeno-Cre in the soft tissue of the suture site. To avoid the loss of skin integrity associated with the retention suture, we transitioned to an alternative technique without suture to retain the Adeno-Cre into the bladder cavity. Interestingly, although multiple Adeno-Cre treatments were applied, only urothelial hyperplasia but not carcinogenesis was observed in the subsequent experiments of up to 6 months. In conclusion, we observed that the simultaneous inactivation of p53 and activation of Kras induces quick formation of spindle-cell sarcoma in the soft tissues adjacent to the bladder but slow formation of urothelial hyperplasia inside the bladder. These results strongly suggest that the effect of oncogene regulation to produce either hyperplasia or carcinogenesis greatly depends on the tissue type.
Abiraterone acetate plus prednisone versus placebo plus prednisone in chemotherapy-naive men with metastatic castration-resistant prostate cancer (COU-AA-302): final overall survival analysis of a randomised, double-blind, placebo-controlled phase 3 study
Abiraterone acetate plus prednisone significantly improved radiographic progression-free survival compared with placebo plus prednisone in men with chemotherapy-naive castration-resistant prostate cancer at the interim analyses of the COU-AA-302 trial. Here, we present the prespecified final analysis of the trial, assessing the effect of abiraterone acetate plus prednisone on overall survival, time to opiate use, and use of other subsequent therapies. In this placebo-controlled, double-blind, randomised phase 3 study, 1088 asymptomatic or mildly symptomatic patients with chemotherapy-naive prostate cancer stratified by Eastern Cooperative Oncology performance status (0 vs 1) were randomly assigned with a permuted block allocation scheme via a web response system in a 1:1 ratio to receive either abiraterone acetate (1000 mg once daily) plus prednisone (5 mg twice daily; abiraterone acetate group) or placebo plus prednisone (placebo group). Coprimary endpoints were radiographic progression-free survival and overall survival analysed in the intention-to-treat population. The study is registered with ClinicalTrials.gov, number NCT00887198. At a median follow-up of 49·2 months (IQR 47·0–51·8), 741 (96%) of the prespecified 773 death events for the final analysis had been observed: 354 (65%) of 546 patients in the abiraterone acetate group and 387 (71%) of 542 in the placebo group. 238 (44%) patients initially receiving prednisone alone subsequently received abiraterone acetate plus prednisone as crossover per protocol (93 patients) or as subsequent therapy (145 patients). Overall, 365 (67%) patients in the abiraterone acetate group and 435 (80%) in the placebo group received subsequent treatment with one or more approved agents. Median overall survival was significantly longer in the abiraterone acetate group than in the placebo group (34·7 months [95% CI 32·7–36·8] vs 30·3 months [28·7–33·3]; hazard ratio 0·81 [95% CI 0·70–0·93]; p=0·0033). The most common grade 3–4 adverse events of special interest were cardiac disorders (41 [8%] of 542 patients in the abiraterone acetate group vs 20 [4%] of 540 patients in the placebo group), increased alanine aminotransferase (32 [6%] vs four [<1%]), and hypertension (25 [5%] vs 17 [3%]). In this randomised phase 3 trial with a median follow-up of more than 4 years, treatment with abiraterone acetate prolonged overall survival compared with prednisone alone by a margin that was both clinically and statistically significant. These results further support the favourable safety profile of abiraterone acetate in patients with chemotherapy-naive metastatic castration-resistant prostate cancer. Janssen Research & Development.
Increased Survival with Enzalutamide in Prostate Cancer after Chemotherapy
In a study involving nearly 1200 men with metastatic prostate cancer who had progressive disease after chemotherapy, enzalutamide, a novel androgen-receptor blocker, extended the median survival by nearly 5 months, as compared with placebo (18 months vs. 13 months). Prostate cancer is an androgen-dependent disease that initially responds but later becomes resistant to established therapies that reduce circulating testosterone levels or inhibit androgen binding to the androgen receptor. 1 – 4 Reactivation of the disease despite castrate levels of testosterone represents a transition to the lethal phenotype of castration-resistant prostate cancer. 5 , 6 This state was previously called androgen-independent or hormone-refractory prostate cancer but is now recognized to be driven by androgen-receptor signaling, in part due to overexpression of the androgen receptor itself. 7 , 8 In preclinical models of prostate cancer, androgen-receptor overexpression shortens the period of tumor latency and confers resistance to . . .
Titration of Androgen Signaling: How Basic Studies Have Informed Clinical Trials Using High-Dose Testosterone Therapy in Castrate-Resistant Prostate Cancer
Since the Nobel Prize-winning work of Huggins, androgen ablation has been a mainstay for treatment of recurrent prostate cancer. While initially effective for most patients, prostate cancers inevitably develop the ability to survive, grow, and metastasize further, despite ongoing androgen suppression. Here, we briefly review key preclinical studies over decades and include illustrative examples from our own laboratories that suggest prostate cancer cells titrate androgen signaling to optimize growth. Such laboratory-based studies argue that adaptations that allow growth in a low-androgen environment render prostate cancer sensitive to restoration of androgens, especially at supraphysiologic doses. Based on preclinical data as well as clinical observations, trials employing high-dose testosterone (HDT) therapy have now been conducted. These trials suggest a clinical benefit in cancer response and quality of life in a subset of castration-resistant prostate cancer patients. Laboratory studies also suggest that HDT may yet be optimized further to improve efficacy or durability of response. However, laboratory observations suggest that the cancer will inevitably adapt to HDT, and, as with prior androgen deprivation, disease progression follows. Nonetheless, the adaptations made to render tumors resistant to hormonal manipulations may reveal vulnerabilities that can be exploited to prolong survival and provide other clinical benefits.
Phase II Trial of Acai Juice Product in Biochemically Recurrent Prostate Cancer
Background: Plant derivatives have been studied as therapies for prostate cancer based on their purported anti-inflammatory and antioxidant properties and low toxicities. The acai berry is an example of a plant rich in phytochemicals, which may slow the growth of prostate cancer. Methods: This was a phase II, Simon 2-stage clinical trial in patients with biochemically recurrent prostate cancer with a primary endpoint of prostate-specific antigen (PSA) response. Patients were asymptomatic, with a rising PSA of at least 0.2 ng/mL, and were treated with twice daily intake of Acai Juice Product until PSA progression, with a primary endpoint of PSA response. Results: Twenty-one patients were enrolled in the first stage of the trial. One of those patients had a PSA response within the study time period. The PSA doubling time was lengthened in 71% of patients (95% confidence interval = 48% to 89%) on the trial, and in a small number of responders, this was sustained over an extended time. Conclusions: This study did not meet its primary endpoint of 50% PSA response. Nevertheless, the overall tolerability and effects on PSA stabilization warrant further exploration in a biochemically recurrent population.
Consensus statement on best practice management regarding the use of intravesical immunotherapy with BCG for bladder cancer
A focus group of specialized urologic oncologists has reviewed guidelines and clinical evidence and discussed their experiences regarding the optimal use of BCG in the management of patients with NIMBC. Here, they provide a review of BCG therapy, clarify complex related topics and recommend best practice guidelines to improve BCG use and patient outcomes. Multiple clinical trials have demonstrated that intravesical Bacillus Calmette–Guérin (BCG) treatment reduces recurrences and progression in patients with non-muscle-invasive bladder cancer (NMIBC). However, although BCG has been in use for almost 40 years, this agent is often underutilized and practice patterns of administration vary. This neglect is most likely caused by uncertainties about the optimal use of BCG, including unawareness of optimal treatment schedules and about patient populations that most benefit from BCG treatment. To address this deficit, a focus group of specialized urologic oncologists (urologists, medical oncologists and radiation oncologists) reviewed the current guidelines and clinical evidence, discussed their experiences and formed a consensus regarding the optimal use of BCG in the management of patients with NIMBC. The experts concluded that continuing therapy with 3-week BCG maintenance is superior to induction treatment only and is the single most important factor in improving outcomes in patients with NMIBC. They also concluded that a reliable alternative to radical cystectomy in truly BCG-refractory disease remains the subject of clinical trials. In addition, definitions for common terms of BCG failure, such as BCG-refractory and BCG-intolerant, have been formulated.